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Abstract

The intersection of Deep Learning (DL) and pathology has gained significant at-
tention, encompassing cell classification, detection, segmentation, and whole-slide
image (WSI) analysis. Further works at this intersection have increasingly focused
on integrating uncertainty quantification (UQ) with DL methods for pathology to
address their occasional unreliability in clinical settings. Conformal Prediction
(CP) is one of the UQ methods deployed for various settings, including pathology.
CP methods are computationally efficient and generate prediction sets to include
the true label with a user-defined coverage guarantee. However, CP methods lack
inherent control over the compositionality of prediction sets, which restricts their
clinical utility. This study presents a novel training method using Hinge loss for the
underlying models used in CP methods. This approach aims to provide effective
control over the compositionality of prediction sets, aligning more closely with
the specific needs of pathologists. We evaluate the effectiveness of this training
approach using three application specific metrics tailored to enhance the integra-
tion of CP methods into clinical pathology workflows. Our results show that the
Hinge loss based training approach outperforms the traditional Cross Entropy
training method across all evaluation metrics, leading to effective management of
the compositionality of prediction sets.

1 Introduction

The integration of computational algorithms for analyzing microscopic images of human tissue or
cells, known as computational pathology, has emerged as a critical area of research with significant
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Figure 1: Comparison of Cross-Entropy and Hinge Loss functions used with a CP method in a
pathological cell classification workflow, highlighting their impact on the composition of prediction
sets. As shown on the left, Cross-Entropy loss results in unordered set sizes with mixed risk and
confusing class pairs. In contrast, Hinge loss produces risk-aligned ordered set sizes with minimal
mixed risk and confusing class pairs.

clinical implications [10, 27]. This field leverages advanced Machine Learning (ML) techniques to
analyze and interpret tissue samples, leading to enhanced efficiency in cancer diagnosis and treatment.
[45, 10, 21, 36].

Extensive research in computational pathology, spanning both histopathology and cytology [17, 3, 51],
has focused on morphology-based cell classification [37, 31, 26, 23], cell detection tasks [19, 58, 60],
cellular segmentation [46, 50, 56, 62], and enhancing tissue-level assessments using whole-slide
images (WSI) [6, 8, 30, 43]. Collectively, these advancements have significantly improved diagnostic
accuracy and contributed to more effective patient care. However, translating these developments into
practical medical settings remains challenging. Despite these advancements significantly improving
diagnostic accuracy and patient care, integrating them into clinical practice remains a challenge.

A major limitation in the clinical deployment of these approaches is the lack of integration of
uncertainty estimates in Deep Learning (DL) models, as relying solely on maximum-likelihood
estimates and their probabilities may not ensure optimal diagnostic reliability. For example, if a
DL model provides a prediction with high uncertainty or low confidence, it could abstain from
decision-making, thus enabling the pathologist to intervene in such instances.

Some advancements have been made in integrating uncertainty quantification (UQ) into DL workflows
for computational pathology [12, 35, 34], utilizing probabilistic techniques such as Monte Carlo (MC)
dropout, ensemble methods, and test-time augmentation (TTA), which are inherently computationally
intensive and have limited real-world deployment.

An alternative approach to uncertainty quantification (UQ) is Conformal Prediction (CP), which
delivers actionable uncertainty estimates by generating prediction sets that are likely to contain the
true outcome with a user-specified probability. This computationally efficient method is particularly
helpful in medical applications, where it is crucial not only to identify the most probable diagnosis
but also to confirm or exclude potentially harmful diagnoses. For example, even if the most likely
diagnosis is a common throat infection, CP methods help rule out serious conditions like Tuberculosis
(TB), COPD, or Lung cancer by including all possible outcomes in the prediction sets.

Extensive works in CP have been concentrated on improving prediction set size and coverage
guarantees, which ensure that the true outcome is included within the predicted set with a specified
probability. However, these metrics are insufficient for integrating CP methods within computational
pathology workflows. For clinical deployment, it is vital to effectively control the compositionality
of conformal prediction sets to ensure that the included classes align with the needs of pathologists.

The compositionality of the prediction sets is primarily dependent on the probability distribution
across different classes, which is influenced by the training method used for the underlying DL
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model. Therefore, it is essential to provide a training approach that enables some control over the
compositionality of the prediction sets and develop metrics for their evaluation tailored for clinical
pathology workflows. Working upon these, the main contributions of this work are:

1. We introduce a novel training approach using hinge loss for underlying models in CP methods,
offering effective control over the compositionality of the prediction sets and enhancing the integration
of CP methods into pathological workflows.

2. We provide three application specific metrics dealing with the compositionality of conformal
prediction sets, specifically designed to align CP methods with the needs of pathologists.

2 Related Works

2.1 Conformal Prediction (CP) methods

Conformal prediction (CP), is built on the foundational work by Vovk et al. [55], which has been
explored in both regression [39] and classification settings [42, 1]. Most CP methods use a split
approach [25] with a held-out calibration set, though some alternatives employ cross-validation [54].
Additional works have been focused on achieving and improving conditional coverage [53, 11, 40],
obtaining smaller confidence sets [4, 48, 14], addressing issues related to out-of-distribution settings
[33, 5], & domain adaptation [15].

2.2 CP methods for Medical Settings

CP methods have been utilized across various healthcare domains, including MRI [28], CT scans
[2, 61], X-rays [22], and other clinical areas [29, 63].

3 Conformal Prediction & Procedures

Conformal prediction is a statistical framework that generates prediction sets containing ground truth
labels with a desired coverage guarantee. It is distribution-free, rigorous in statistics, easy to integrate
with any ML model, and agnostic to the underlying prediction problem. A general step-by-step
workflow for any conformal prediction, given an input x & output y, is outlined below:

1. Define a heuristic notion of uncertainty

A trained model is used to quantify its uncertainty based on a holdout set known as the calibration
set, which is not used during the model’s training phase. For classification tasks, a typical measure
for uncertainty is to consider the model’s softmax outputs or logits.

2. Define the score function S(x, y) ∈ R
A real-valued score function is defined for each input-output pair (x, y) in the calibration set, for
measuring its similarity to training examples. A standard score function can be the softmax score for
the true class.

3. Compute q̂ threshold of the calibration scores

q̂ is calculated as a quantile of the sorted conformity scores from the calibration set. Specifically, q̂ is
the ⌈(n+1)(1−α)⌉

n quantile of these scores, where n is the number of examples in the calibration set,
α is the error rate (e.g., α = 0.05 for a 95% confidence level), and ⌈·⌉ denotes the ceiling function.
q̂ serves as a threshold to ensure that the true class is included in the prediction set with a 1 − α
confidence level during testing.

4. Use this q̂ threshold to form the prediction sets C for new examples for the prediction set:

For a new test input, a prediction set is obtained by including all classes whose score meets or exceeds
q̂, ensuring the true label is included with confidence 1− α.

The performance of any CP method is generally evaluated using the following metrics:

1. Set Size: It corresponds to |Prediction Set|, which denotes the cardinality of the prediction set or
the number of elements it contains.
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Figure 2: Overview of the working of LAC, APS, and RAPS conformal prediction methods

2. Coverage: It represents the assurance provided by a CP method that the true label will be included
in the prediction set with a probability of 1-α, where α is the error rate. For example, with 95%
coverage (α=0.05), the method ensures that the true label is included in the prediction set for at least
95% of test data points.

3.1 LAC

LAC [42] aims to construct prediction sets C from model f and calibration data using the following
steps: First, we calculate the conformal score si for each calibration point (Xi, Yi), defined as
si = 1− f(Xi)Yi , the 1−softmax score for the true class. Next, we compute the threshold q̂ as the
⌈(n+1)(1−α)⌉

n quantile of the sorted conformal scores. Finally, for a new test point (Xtest, Ytest), we
construct the prediction set C(Xtest) = {y : f(Xtest)y ≥ 1 − q̂}, by including classes with scores
meeting or exceeding 1− q̂.

3.2 Adaptive Prediction Sets (APS)

APS [40] aims to construct prediction sets C from model f and calibration data using the following
steps: First, for a calibration point (Xi, Yi), we sort the softmax scores for all classes in descending
order and calculate the conformal score si =

∑k
i=1 f(Xi) as the sum of softmax outputs for all

classes up till the true class k. Next, we compute the threshold q̂ as the ⌈(n+1)(1−α)⌉
n quantile of

the sorted conformal scores. Finally, for a new test point (Xtest, Ytest), we construct the prediction
set C(Xtest) = {f1(Xtest), . . . , fk′(Xtest)} by including all classes until

∑k′

i=1 f(Xtest) or the sum of
sorted softmax scores exceeds q̂.

3.3 Regularized Adaptive Prediction Sets (RAPS)

RAPS [1] aims to constructs prediction sets C from model f and calibration data using the following
steps: First, for a calibration point (Xi, Yi), we sort the softmax scores in descending order and calcu-
late the conformal score as si =

∑k
i=1 f(Xi) + λ, where a regularization term λ is added for classes

beyond a randomized threshold (kreg). Next, we compute the threshold q̂ as the ⌈(n+1)(1−α)⌉
n quantile

of the sorted conformal scores. Finally, for a new test point (Xtest, Ytest), we construct the prediction
set C(Xtest) = {f1(Xtest), . . . , fk′(Xtest)} by including all the classes, until

∑k′

i=1 f(Xtest)+λ or the
sum of class-wise sorted softmax scores for all classes, appended with a regularization term exceeds
q̂.
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4 Loss Functions for Classification

In this section, we explain in detail two commonly used loss functions for multi-class classification:
Cross Entropy loss and Hinge loss.

4.1 Cross Entropy (CE) Loss

Cross Entropy (CE) is a loss function that measures a classification model’s performance by quantify-
ing the difference between true and predicted class distributions, as shown in eq 1:

L = −
K∑
i=1

yi log pi (1)

where K is the number of total classes, yi is the true probability for class i & pi is the predicted
probability for class i.

CE loss operates on the softmax scores of different classes. It directly influences the probability
distribution by concentrating a high probability mass on the true class while reducing it for the
incorrect classes, without any regard to the relative ordering of the probabilities assigned to the
incorrect classes.

Considering a three-class classification problem with Class A as the true class, the model initially
predicts probabilities as [0.33, 0.32, 0.35] for classes A, B, and C respectively. As training progresses
with cross-entropy loss, the probabilities might evolve as follows:

After some training: [0.5, 0.3, 0.2]
After further training: [0.7, 0.2, 0.1]

Cross-entropy loss focuses on directing a higher probability mass on the true class (A) and lowering
it for the incorrect classes (B and C), but it does not regulate the relative probability ordering between
incorrect classes.

4.2 Hinge Loss

Hinge loss is a loss function that guarantees the correct class is predicted with a specified margin of
confidence. It achieves this by summing the excess margins of the correct class over the incorrect
classes, adjusted by a margin parameter. For a true class label y and score vector f , it is computed as
given by eq 2:

L = −
∑
i ̸=y

max(0, fi − fy +∆) (2)

where fi is the predicted score for class i, fy is the predicted score for the true class y & ∆ is the
margin parameter which specifies the minimum difference required between the true class score and
the scores of other classes.

Hinge loss operates on logits (raw score) and aims to maximize the score difference between true
class and incorrect class based on the specified margin. It enforces the margin constraints between the
correct class and other classes by penalizing the scores that fail to meet these margins and adjusting
the logits to ensure the true class has a higher score relative to others, with varying degrees of
emphasis based on the margin requirements. This margin control property affects score adjustments
and subsequently impacts probability mass distribution.

Considering a three-class classification problem with Class A as the true class, where the initial logits
are [87.2, 87.9, 87.5] and the corresponding SoftMax outputs are [0.28, 0.42, 0.30] for Classes A, B,
and C, respectively. Our goal is to predict the correct class A while also ensuring that the probability
pattern follows: prob(A) > prob(C) > prob(B). To achieve this, we set the margins as follows:

Margin 1 (between A and B): 1.0
Margin 2 (between A and C): 0.5
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Figure 3: Detailed class-wise distribution of the CRIC dataset for 8-way classification task

After further training with hinge loss, the logits might update to [90, 86, 88], resulting in probabilities
[0.86, 0.02, 0.12] for classes A, B, and C, respectively. The specified margins impose penalties to
ensure greater separation between classes A and B compared to the separation between classes A and
C.

4.3 Hinge Loss for Controlling Set Composition

In the previous sub-sections, we discussed how Hinge Loss affects the probability distribution by
enforcing margin constraints between the correct and incorrect classes. This margin control property
adjusts the scores and the probability mass distribution accordingly. It can be leveraged for effective
control over the composition of conformal prediction sets by tuning the margin parameter. In this
section, we provide a detailed discussion of how Hinge Loss can be integrated with the three CP
methods to gain effective control over the composition of conformal prediction sets.

1. LAC: LAC generates prediction sets by including classes with probabilities above a specified
threshold. By setting appropriate margins for hinge loss based on requirements, the distribution of
probability mass can be adjusted through model training. This impacts the inclusion or exclusion
of certain classes by making certain classes more or less likely to exceed the threshold. Therefore,
integrating Hinge Loss with LAC can precisely adjust the model’s probability outputs to fulfill specific
prediction set requirements, effectively controlling the set composition.

2. APS & RAPS: Adaptive Prediction Sets (APS) & Regularized Adaptive Prediction Sets (RAPS)
form prediction sets by including the ordered probabilities of all classes until their cumulative
probability mass exceeds a predefined threshold. By setting appropriate margins for hinge loss based
on requirements, the model can be trained to adjust the probabilities of certain classes, pushing them
to either end of the ordered probabilities and impacting their inclusion or exclusion in the prediction
set. Therefore, using Hinge Loss with APS/RAPS fine-tunes the model’s probabilities to alter the
ranking of certain classes in the ordered probabilities and effectively control the composition of
prediction sets.

5 Methodology

In this section, we provide details about the dataset and the experimental setup for the multi-class
classification task.

5.1 Dataset Used

The utilized dataset is from the Center for Recognition and Inspection of Cells (CRIC) Searchable
Image Database [38], which was classified by three cytopathologists using the Bethesda System [44].
The dataset comprises 400 images at 1376 × 1020 pixels and 150 dpi from Pap smear tests, with
each cell annotated by spatial coordinates. These cells were originally categorized into 6 classes:
NILM, ASC-US, LSIL, ASC-H, HSIL, and SCC. For this study, our pathologist further divided the
NILM class into Superficial, Intermediate, and Parabasal classes based on the Bethesda System and
categorized all classes into three risk levels categories. The detailed class-wise distribution of the
dataset is shown in Figure 3.

5.2 Experimental Setup

The dataset is split into 70% training/validation and 30% calibration/test sets, with 5-fold cross-
validation applied to the training and validation set.We trained several underlying models for CP
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Coverage LAC APS RAPS

90% 1.78±0.17 4.36±0.26 2.12±0.09

95% 2.4±0.27 5.25±0.32 2.73±0.17

99% 3.78±0.50 6.45±0.31 4.28±0.75

Table 1: Comparison of average set size for various CP methods across coverages.

Model AUC Accuracy

DieT 78.24±0.49 71.28±0.17

ViT 77.35±0.39 70.76±0.21

ResNet 152 75.66±0.35 68.29±0.19

DenseNet 73.55±0.31 63.29±0.22

ResNet 50 73.04±0.41 68.90±0.15

RegNet 72.27±0.56 65.16±0.39

Xception 70.80±0.35 60.95±0.17

EfficientNet 70.79±0.49 60.93±0.30

Table 2: Comparison of the AUC and accuracy for various underlying models.

methods, including DieT [52], ViT [13], ResNet152 [16], DenseNet [18], ResNet50 [16], RegNet
[59], Xception [9], and EfficientNet [49] for 8-way classification on the CRIC dataset and evaluated
their performance using AUC and accuracy. Each model was trained for 100 epochs with early
stopping, using patience of 20 epochs and validation loss as the stopping criterion. The Adam
optimizer was used with a learning rate of 0.0002, a weight decay of 5e-3, and a batch size of 512.
DieT, which achieved the highest AUC and accuracy across the 5 folds, was chosen as the underlying
model for our CP methods for all our experiments. We trained the models using both cross-entropy
and hinge loss functions. For hinge loss, we set the low margin to 1 and the high margin to 5 based
on the requirements of our experiments. We also performed a grid search for hyperparameter tuning
(kreg, λ) for the RAPS method. For all experiments, we evaluated the desired metrics for each CP
method across three coverage levels (i.e. 90%, 95% & 99%) and conducted 100 trials to obtain robust
and reliable results.

6 Experiments

In this section, we provide detailed information on our three experiments and the associated metrics
used to evaluate CP methods.

6.1 Risk-Based Controlled Set Sizes

The pathological diagnostic workflow is crucial for precise cancer diagnosis and treatment. The
WHO estimates a sharp increase in cancer cases, from 20 million in 2022 to 35 million by 2050
[7]. However, pathologists constitute only 0.8% of physicians globally [32], which is insufficient to
meet this rising demand. This results in significant disparities in pathologist-to-population ratios and
imposes a heavy workload on pathologists, involving samples with varying risk levels and requiring
specialized expertise. This increased workload and diverse cases can affect the quality and efficiency
of diagnostics.

To tackle this issue, pathologists need to manage their workflow efficiently to allocate time to each
case based on its risk level to ensure accurate diagnoses. This necessitates conformal methods that
adjust prediction set sizes based on risk levels to align with pathological workflows.

In our study, we aim to establish a descending order of set sizes based on the associated risk level of
each diagnosis, where High Grade cells have the largest set size, Low-Grade cells have a moderate
set size, and Normal cells have the smallest set size. We track the average set size of prediction sets
across varying risk levels to achieve the order of set sizes as mentioned in eq 3.

C(High Grade) > C(Low Grade) > C(Normal) (3)

where C(A) denotes the set size or cardinality of A.
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Thus, a large set size for a particular diagnosis can signal to the pathologist that the specimen is
likely in the High-Grade category, which requires more time and expertise due to its higher risk.
In contrast, smaller set sizes suggest that the specimen is in the Normal or Low-Grade category,
involving lower risk and allowing for faster processing. This risk-based approach to controlling set
size will help streamline workflow management and improve diagnostic accuracy, ultimately leading
to better patient outcomes.

6.2 Avoiding Classes from Various Risk Levels

Pathological diagnostic workflow often handles a variety of conditions, including common low-
risk cases, borderline cases, and rare high-risk conditions. The accurate differentiation between
these varied risk levels of cases is essential for providing explicit diagnoses and delivering effective
treatments for each case. However, this need for accurate differentiation of cases can be challenging
and heighten the cognitive workload for pathologists, potentially leading to a higher likelihood of
misdiagnosis and greater patient anxiety.

Although CP methods used in medical settings provide reliable results, they often lack control over
the compositionality of prediction sets, resulting in prediction sets that include conditions from
various risk levels. This poses a significant challenge when integrating CP methods into pathological
diagnosis workflows. For example, if a pathologist encounters a prediction set with conditions of
varying risk levels, it can lead to diagnostic ambiguity and increased patient anxiety due to additional
tests.

Focusing on this problem, our experiment aims to enhance conformal predictors by providing effective
control over the compositionality of prediction sets to avoid the inclusion of classes with different
risk levels such as Normal, Low Grade, and High Grade. We track the reduction of prediction sets
with overlapping classes across various risk levels using eq 4:

Overlapping Set % =
1

n

n∑
i=1

1! , yi ∈ C(xi), (4)

where Noverlap is the total number of cases with overlapping classes in their confidence sets & Ntotal is
the total number of test cases.

This approach will minimize diagnostic ambiguity for pathologists, leading to increased diagnostic
efficiency and improved patient outcomes through limited unnecessary testing.

6.3 Avoiding Confusing Classes

Pathologists frequently encounter the challenge of distinguishing between diseases with similar char-
acteristics that require distinct treatments. For example, distinguishing between the two most common
non-melanoma skin cancers, Basal Cell Carcinoma(BCC) and Squamous Cell Carcinoma(SCC), is
challenging due to overlapping clinical and histological features [41].

Providing specialized expertise for such critical and ambiguous cases is pivotal for accurate diagnoses
and effective treatments. However, these confusing cancer cell types often hinder reaching a consensus
on its pathological interpretation, leading to misdiagnosis and impacting patient turnaround times.

CP methods aim to include the true class within a user-defined coverage, but this approach is
inadequate for pathological workflows. There is an inherent need for CP methods to avoid including
confusing classes along with the true class in the prediction sets. This shall reduce diagnostic
confusion and assist pathologists in making accurate diagnoses.

Our experiment aims to reduce the occurrence of prediction sets with the confusing cancer cell pairs
listed below, which pathologists often misidentify due to similar cytological features [20]:

1. Atypical Squamous Cells, cannot exclude HSIL (ASC-H) and High-Grade Squamous
Intraepithelial Lesions (HSIL)

2. Atypical Squamous Cells of Undetermined Significance (ASC-US) and Low-Grade Squa-
mous Intraepithelial Lesions (LSIL)
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LAC APS RAPS
CROSS ENTROPY HINGE CROSS ENTROPY HINGE CROSS ENTROPY HINGE

Covr.= 90%
Normal 1.73±0.15 1.75±0.17 3.93±0.19 3.58±0.22 1.99±0.20 1.84±0.26

Low Grade 2.23±0.26 2.41±0.2 5.66±0.24 4.68±0.29 2.75±0.36 2.53±0.29

High Grade 1.68±0.15 2.68±0.29 4.15±0.22 5.08±0.27 1.98±0.23 2.82±0.45

Covr.= 95%
Normal 2.17±0.19 2.29±0.21 4.27±0.33 4.64±0.96 3.87±0.58 2.4±0.28

Low Grade 2.95±0.32 3.04±0.26 6.60±0.36 5.77±0.75 5.50±0.70 3.18±0.33

High Grade 2.15±0.21 3.75±0.29 5.04±0.39 6.08±0.66 2.53±0.18 3.69±0.39

Covr.= 99%
Normal 3.35±0.48 3.45±0.46 6.06±0.45 7.72±0.47 3.87±0.58 3.55±0.36

Low Grade 4.74±0.70 4.49±0.61 7.46±0.2 7.81±0.3 5.50±0.7 4.67±0.48

High Grade 3.42±0.53 4.92±0.55 6.49±0.45 7.92±0.55 4.06±0.63 5.05±0.43

Table 3: Comparision of average set size for cross-entropy and hinge loss used for CP methods across
various coverages.

We track the reduction of prediction sets with confusing cell class pairs across various risk levels
using eq 5:

Confusing Set % =
Nconfusing

Ntotal
× 100 (5)

where Nconfusing is the total number of cases with confusing class pairs in their confidence sets &
Ntotal is the total number of test cases.

This approach will reduce patient turnaround time, leading to improved diagnostic workflow and
overall patient care.

7 Results & Discussion

In this section, we present the results for each of our experiments, along with their corresponding
analyses and findings.

7.1 Risk-Based Controlled Set Sizes

In Table 3, we track the average prediction set sizes of Normal, Low Grade, and High Grade
categories for various CP methods across three coverage levels, with the underlying model trained
using cross-entropy and hinge loss.

Table 3 demonstrates that CE loss with any CP method does not produce set sizes ordered by
associated risk levels at any coverage setting. In contrast, hinge loss used with any CP method across
all coverage settings consistently achieves the desired order set sizes, where High-Grade cells have
the largest set sizes, Low-Grade cells have moderate set sizes, and Normal cells have the smallest
sets.

The desired set size order is achieved by adjusting the margin control property of Hinge Loss for each
category as follows:

1. Normal Grade: When the true class (e.g., Superficial cell, Intermediate cell, Parabasal cell) is
in the Normal category, we apply a high margin to the other 7 incorrect classes. This high margin
tunes the probability of the true class to be substantially higher than all incorrect ones, limiting the
inclusion of incorrect classes and resulting in the smallest set sizes.

2. Low Grade (LG): When the true class (e.g., ASC-US, LSIL) belongs to the Low-Grade category,
we ease the margin constraints compared to the Normal category. We use a high margin for any 5
incorrect classes and a lower margin for the remaining 2 incorrect classes. This adjustment allocates a
higher probability mass to the true class and the two incorrect classes corresponding to lower margins
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LAC APS RAPS
CROSS ENTROPY HINGE CROSS ENTROPY HINGE CROSS ENTROPY HINGE

Coverage
90% 25.40±2.39 17.15±1.24 69.28±3.68 37.03±5.53 31.25±3.18 19.06±1.16

95% 33.88±4.08 25.65±5.80 80.66±4.19 57.95±5.5 41.19±3.81 27.17±0.60

99% 57.76±8.98 53.69±11.8 92.22±3.19 87.58±7.84 64.56±6.48 60.81±5.30

Table 4: Comparision of Overlapping Set % for cross-entropy and hinge loss used for CP methods
across various coverages.

LAC APS RAPS
CROSS ENTROPY HINGE CROSS ENTROPY HINGE CROSS ENTROPY HINGE

Coverage
90% 19.47±2.91 8.89±1.64 42.2±1.11 23.25±1.60 23.54±2.66 11.0±0.79

95% 27.72±3.18 14.37±2.56 45.41±0.84 28.75±2.55 31.59±3.60 15.65±1.67

99% 38.78±3.03 27.20±4.86 48.05±0.72 43.35±5.75 41.08±3.58 20.87±1.83

Table 5: Comparision of Confusing Set % for Cross Entropy and Hinge loss used for CP methods
across various coverages.

relative to the remaining 5 incorrect classes with high margins, resulting in a larger prediction set size
than the Normal group but smaller than the High-Grade group.

3. High Grade (HG): For the High-Grade category (e.g., ASC-H, HSIL, SCC), we further ease
the margin constraints. In this case, we apply a high margin to any 4 incorrect classes, while the
remaining 3 incorrect classes receive a lower margin. This adjustment allocates a higher probability
mass to the true class and the 3 incorrect classes corresponding to lower margins relative to the
remaining 4 incorrect classes with high margins, resulting in the largest prediction set size among the
three categories.

This strategical utilization of hinge loss margins across different risk categories allows for effective
control over the compositionality of prediction sets, resulting in the desired order of set sizes based
on associated risk levels.

7.2 Avoiding Classes from Various Risk Levels

In Table 4, we track the Overlapping Set % for various CP methods across 3 coverage guarantees,
with the underlying model trained using cross-entropy and hinge loss.

Table 4 demonstrates that the Overlapping Set % for Hinge Loss is consistently lower than for CE
Loss across all CP methods and coverage settings. The difference of Overlapping Set % ranges from
5% to 46% across various CP methods and coverage settings. This reduction in Overlapping Set % is
achieved by adjusting the margin control property of Hinge Loss for all groups as detailed below:

For a true class in a specific group, we apply low margins for all classes in that category and
high margins for all other classes. This approach concentrates a higher probability mass on the
classes belonging to the correct category, thereby reducing the inclusion of classes from all incorrect
categories. For example, if the true class belongs to the Normal category, we assign low margins to all
Normal classes and high margins to Low-Grade and High-Grade classes. This approach concentrates
a greater probability mass on the Normal classes, ultimately reducing the likelihood of including
classes from the Low Grade & High-Grade categories in the prediction set.

This effective usage of the Hinge loss margin results in a reduced Overlapping Set % compared to
CE loss.

7.3 Avoiding Confusing Classes

In Table 5, we track the Confusing Set % for various CP methods across 3 coverage guarantees, with
the underlying model trained using cross-entropy and hinge loss.

Table 5 demonstrates that the Confusing Set % for Hinge Loss is consistently lower than that for CE
Loss across all CP methods and coverage settings. The difference of Overlapping Set % ranges from
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9% and 54% across various CP methods and coverage settings. This reduction in Confusing Set % is
achieved by adjusting the margin control property of Hinge Loss for all groups as detailed below:

For a true class belonging to a confused class pair, we apply a high margin to its corresponding
confused class and low margins for all other classes. This approach reduces the probability mass
assigned to the corresponding confusing class, thereby lowering the likelihood of its inclusion in the
prediction set. For example, if the true class is ASC-H, we assign a high margin to its corresponding
confused class i.e., HSIL and low margins for all other classes. This approach reduces the likelihood
of including HSIL in the prediction set.

This effective usage of the Hinge Loss margins results in a reduced Confusing Set % compared to CE
loss.

8 Conclusion

In this study, we propose a novel training method using Hinge loss for underlying models in CP
methods, which enables effective control over the compositionality of prediction sets. We evaluate
this method using three application-specific metrics vital for deploying and aligning CP methods with
real world pathological workflows. Our results indicate that the Hinge loss approach consistently
surpasses the traditional Cross Entropy loss method across all three metrics for the CRIC dataset,
demonstrating effective control over set compositionality. We believe that this control over the
composition of prediction sets is crucial for better alignment with the needs of pathologists, leading
to smoother integration into clinical workflows and enhancing overall patient care.
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A Supplemental Material

This supplementary material contains additional qualitative results and other details for the Hinge
Loss training method applied to the BreakHis dataset.

B Dataset

Figure 4: Detailed class-wise distribution of the BreakHist dataset for 8-way classification task

The dataset used is the Breast Cancer Histopathological Image Classification (BreakHis) dataset
[47] comprising 7,909 microscopic images of breast tumour tissue from 82 patients. These images
were obtained using the SOB method, also known as partial mastectomy or excisional biopsy at a
resolution of 700x460 pixels across different magnification levels (40x, 100x, 200x, and 400x). The
dataset contains four histological distinct types of benign breast tumours: Adenosis (A), Fibroade-
noma (F), Phyllodes Tumour (PT), and Tubular Adenona (TA); and four malignant tumours (breast
cancer): Ductal Carcinoma (DC), Lobular Carcinoma (LC), Mucinous Carcinoma (MC) and Papillary
Carcinoma (PC). The detailed class-wise distribution of the dataset is shown below in Figure 4.

Coverage LAC APS RAPS

90% 1.15±0.04 4.66±0.14 1.40±0.01

95% 1.39±0.07 5.88±0.11 1.66±0.08

99% 2.55±0.40 6.85±0.25 2.93±0.28

Table 6: Comparison of average set size for various CP methods across coverages.

C Experiments

In this section, we provide detailed information on 3 experiments and their corresponding metrics for
evaluating CP methods.

C.1 Risk-Based Controlled Set Sizes

In our experiment, we aim to establish a descending order of set sizes based on the associated risk
level of each diagnosis with the Malignant cells category having a larger set size than the Benign
cells category. We track the average set size of prediction sets across varying risk levels to achieve
the order of set sizes as mentioned in eq 6:

C(Malignant) > C(Benign) (6)
where C(A) denotes the set size or cardinality of A.

Therefore, a large set size for a certain diagnosis can serve as a signal to the pathologist that the
specimen likely falls under the Malignant category, requiring more time and expertise due to its
higher associated risk. In contrast, smaller set sizes suggest the specimen is in the Benign category,
presenting lower risk and enabling faster processing. This risk-based controlled set size approach
will streamline workflow management and enhance diagnostic accuracy, leading to improved patient
outcomes.

C.2 Avoiding Classes from Various Risk Levels

Our experiment aims to enhance conformal predictors by providing effective control over the com-
positionally of prediction sets to avoid the inclusion of classes with varied risk categories namely
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Model AUC Accuracy

DieT 89.68±0.59 84.53±0.19

ViT 88.64±0.27 83.45±0.18

ResNet 152 87.34±0.23 82.25±0.29

DenseNet 85.64±0.48 78.87±0.44

ResNet 50 84.98±0.64 78.68±0.59

RegNet 83.43±0.57 77.23±0.33

Xception 81.15±0.17 72.34±0.67

EfficientNet 80.89±0.29 71.87±0.27

Table 7: Comparison of the AUC and accuracy for various underlying models.

Benign and Malignant. We track the reduction of prediction sets with overlapping classes across
various risk categories using eq 7:

Overlapping Set % =
Noverlap

Ntotal
× 100 (7)

where Noverlap is the total number of cases with overlapping classes in their confidence sets & Ntotal is
the total number of test cases.

This method will reduce diagnostic uncertainty for pathologists, enhancing diagnostic efficiency and
improving patient outcomes by minimizing unnecessary testing.

C.3 Avoiding Confusing Classes

This experiment aims to reduce the occurrence of prediction sets with the confusing cancer cell pairs
listed below, which pathologists often misidentify due to similar histological features [57, 24] :

1. Ductal Carcinoma (DC) and Lobular Carcinoma (LC)
2. Fibroadenoma (F) and Phyllodes Tumor (PT)

We track the reduction of prediction sets with confusing cell class pairs across various risk levels
using eq 8:

Confusing Set % =
Nconfusing

Ntotal
× 100 (8)

where Nconfusing is the total number of cases with confusing class pairs in their confidence sets &
Ntotal is the total number of test cases.

This approach will shorten patient turnaround times, improving diagnostic workflows and enhancing
overall patient care.

D Results & Discussion

In this section, we present the results for each of our experiments, along with their corresponding
analyses and findings.

D.1 Risk-Based Controlled Set Sizes
In Table 8, we track the average prediction set sizes of Benign and Malignant categories for various
CP methods across three coverage levels, with the underlying model trained using cross-entropy and
hinge loss.

Table 8 shows that Hinge Loss, when used with any CP method across all coverage settings, consis-
tently produces the desired set size order, with Malignant cells having larger set sizes than Benign
cells. In contrast, CE loss with any CP method fails to achieve risk-ordered set sizes at any coverage
setting. The desired set size order is achieved by adjusting the margin control property of Hinge Loss
for each category as follows:
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LAC APS RAPS
CROSS ENTROPY HINGE CROSS ENTROPY HINGE CROSS ENTROPY HINGE

Covr.= 90%
Benign 1.19±0.04 1.03±0.01 5.057±0.16 3.90±0.26 1.47±0.005 1.13±0.01

Malignant 1.17±0.03 1.17±0.05 4.55±0.19 7.82±0.05 1.37±0.02 1.86±0.07

Covr.= 95%
Benign 1.44±0.08 1.11±0.02 6.12±0.14 7.45±0.97 1.74±0.07 1.25±0.04

Malignant 1.35±0.06 1.61±0.10 5.70±0.17 7.99±0.004 1.60±0.05 2.46±0.19

Covr.= 99%
Benign 3.10±0.24 1.82±0.35 7.07±0.14 7.92±0.009 3.27±0.27 2.03±0.21

Malignant 2.68±0.22 4.98±1.05 6.78±0.15 7.99±0.001 2.84±0.27 5.37±0.33

Table 8: Comparision of average set size for cross-entropy and hinge loss used for CP methods across
various coverages.

LAC APS RAPS
CROSS ENTROPY HINGE CROSS ENTROPY HINGE CROSS ENTROPY HINGE

Coverage
90% 5.33±0.64 2.93±0.23 65.91±2.29 6.91±0.44 10.37±0.71 3.68±0.24

95% 10.12±1.02 3.28±0.28 78.65±1.34 7.94±0.80 14.62±1.22 4.50±0.32

99% 32.02±4.42 5.80±0.83 90.1±2.66 15.27±3.28 37.42±7.52 6.92±0.83

Table 9: Comparison of Overlapping Set % for cross-entropy and hinge loss used for CP methods
across various coverages.

1. Benign cells: When the true class (e.g., Adenosis, Fibroadenoma, Phyllodes Tumour & Tubular
Adenona) belongs to the Benign cells category, we apply a high margin to the 7 incorrect classes.
This high margin tunes the probability of the true class to be substantially higher than all incorrect
ones, limiting the inclusion of incorrect classes and resulting in the smallest set sizes.

2. Malignant cells: For the Malignant cells category (e.g., Ductal Carcinoma, Lobular Carcinoma,
Mucinous Carcinoma & Papillary Carcinoma), we ease the margin constraints. In this case, we
apply a low margin to all 7 incorrect classes. This adjustment allocates a uniform probability mass
distribution across the 7 incorrect classes, resulting in a larger prediction set size than normal.

This strategical utilization of hinge loss margins across different risk categories allows for effective
control over the compositionality of prediction sets, resulting in the desired order of set sizes based
on associated risk levels.

D.2 Avoiding Classes from Various Risk Levels

In Table 9, we track the Overlapping Set % for various CP methods across coverage guarantees, with
the underlying model trained using cross entropy and hinge loss.

Table 9 demonstrates that the Overlapping Set % for Hinge Loss is consistently lower than for CE
Loss across all CP methods and coverage settings. The difference of Overlapping Set % ranges from
5% to 46% across various CP methods and coverage settings. This reduction in Overlapping Set % is
achieved by adjusting the margin control property of Hinge Loss for all groups as detailed below:

For a true class in a specific group, we apply low margins for all classes in that category and
high margins for all other classes. This approach concentrates a higher probability mass on the
classes belonging to the correct category, thereby reducing the inclusion of classes from all incorrect
categories. For example, if the true class belongs to the Benign category, we assign low margins to
all Benign cell classes and high margins to Malignant classes. This approach concentrates a greater
probability mass on the Benign classes, ultimately reducing the likelihood of including classes from
the Malignant category in the prediction set.

This effective usage of the Hinge Loss margins results in a reduced Overlapping Set % compared to
CE loss.
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LAC APS RAPS
CROSS ENTROPY HINGE CROSS ENTROPY HINGE CROSS ENTROPY HINGE

Coverage
90% 10.48±0.46 7.07±0.64 56.45±1.07 20.27±1.32 15.61±1.06 10.02±0.38

95% 15.76±1.19 11.17±0.80 61.36±1.02 25.82±2.06 21.36±0.87 12.30±0.93

99% 40.86±4.59 24.24±3.49 67.79±1.23 44.20±5.18 41.07±3.41 21.89±1.67

Table 10: Comparision of Confusing Set % for cross-entropy and hinge loss used for CP methods
across various coverages .

LAC APS RAPS
CROSS ENTROPY HINGE CROSS ENTROPY HINGE CROSS ENTROPY HINGE

Covr.= 90%
Normal 0 2.26 0 0 0 0
Low Grade 7.55 1.10 0 0 0 0
High Grade 0.40 0 0 0 0 0

Covr.= 95%
Normal 0 0.81 0 0 0 0
Low Grade 4.27 0 0 0 0 0
High Grade 1.31 0 0 0 0 0

Covr.= 99%
Normal 0 1.52 0 0 0 0
Low Grade 2.16 0.71 0 0 0 0
High Grade 0.58 0 0 0 0 0

Table 11: Comparision of average class coverage gap (CovGap) for cross-entropy and hinge loss used
for CP methods across various coverages for CRIC dataset w.r.t Risk-Based Controlled Set Sizes.

D.3 Avoiding Confusing Classes

In Table 10, we track the Confusing Set % for various CP methods across 3 coverage guarantees, with
the underlying model trained using cross-entropy and hinge loss.

Table 10 demonstrates that the Confusing Set % for Hinge Loss is consistently lower than that for CE
Loss across all CP methods and coverage settings. The difference of Overlapping Set % ranges from
9% to 54% across various CP methods and coverage settings. This reduction in Confusing Set % is
achieved by adjusting the margin control property of Hinge loss for all groups as detailed below:

For a true class belonging to a confused class pair, we apply a high margin to its corresponding
confused class and low margins for all other classes. This approach reduces the probability mass
assigned to the corresponding confusing class, thereby lowering the likelihood of its inclusion in
the prediction set. For example, if the true class is Fibroadenoma, we assign a high margin to its
corresponding confused class i.e., Phyllodes Tumour and low margins for all other classes. This
approach reduces the likelihood of including Phyllodes Tumour in the prediction set.

This effective usage of the Hinge Loss margins results in a reduced Overlapping Set % compared to
CE loss.

E Loss Function and Coverage Tradeoff

This section provides additional results regarding the effect of training with different loss functions
on the empirical coverage of the prediction sets for all three experiments across both datasets. For
Itest be a test set and |Itest| size of test set, then the empirical coverage ĉ is defined in Eq. 9:

ĉ =
1

|Itest|
∑
i∈Itest

δ[yi ∈ C(xi)] (9)
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LAC APS RAPS
CROSS ENTROPY HINGE CROSS ENTROPY HINGE CROSS ENTROPY HINGE

Covr.= 90%
Benign 0.71 1.87 0 0 0 0
Malignant 1.22 0.44 0 0 0 0

Covr.= 95%
Benign 0.26 1.96 0 0 0 0
Malignant 0.91 0 0 0 0 0

Covr.= 99%
Benign 0.30 1.8 0 0 0 0
Malignant 1.9 0 0 0 0 0

Table 12: Comparision of average class coverage gap (CovGap) for cross-entropy and hinge loss used
for CP methods across various coverages for BreakHist dataset w.r.t Risk-Based Controlled Set Sizes.

LAC APS RAPS
CROSS ENTROPY HINGE CROSS ENTROPY HINGE CROSS ENTROPY HINGE

Coverage
90% 0 0.71 0 0 0 0
95% 0 0.41 0 0 0 0
99% 0.50 0.63 0 0 0 0

Table 13: Comparison of average class coverage gap (CovGap) for cross-entropy and hinge loss
used for CP methods across various coverages for CRIC dataset w.r.t Avoiding Classes from various
classes.

where δ denotes an indicator function that is 1 when its argument is true and 0 otherwise. We examine
the empirical coverage tradeoff between the loss functions by utilizing the average class coverage
gap (CovGap) metric, which is outlined in Eq. 10:

CovGap = 100× 1

|Y|
∑
y∈Y

max (0, (1− α)− ĉk) (10)

where ĉk is the empirical class-conditional coverage of class k.

E.1 Risk-Based Controlled Set Sizes

In Table 11 & Table 12 , we track the average class coverage gap (CovGap) for various CP methods
across 3 coverage guarantees, with the underlying model trained using cross-entropy and hinge loss
on the CRIC and BreakHist datasets w.r.t to the first experiment.

Table 11 & Table 12 demonstrates that the average class coverage gap (CovGap) for Hinge loss and
Cross Entropy consistently achieves empirical coverage evident from across all risk categories for
APS and RAPS on CRIC and BreakHist dataset. In the case of LAC, Cross-Entropy Loss results
in a random distribution of CovGap, whereas Hinge Loss leads to an increased CovGap which is
consistent with the desired order of set sizes according to associated risk levels.

E.2 Avoiding Classes from Various Risk Levels

In Table 13 & Table 14, we track the average class coverage gap (CovGap) for various CP methods
across 3 coverage guarantees, with the underlying model trained using cross-entropy and hinge loss
on both datasets w.r.t to the second experiment.

Table 13 & Table 14 demonstrates that the average class coverage gap (CovGap) for Hinge loss
is consistently higher than that for CE Loss in all CP methods and coverage settings across both
datasets. This trend can be attributed to the slight decrease in AUC (76.14 for CRIC dataset & 88.42
for BreakHist) and accuracy (70.01 for CRIC dataset & 82.64 for BreakHist) when the DieT model
when trained to explicitly avoid classes based on varying risk levels, compared to the baseline.
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LAC APS RAPS
CROSS ENTROPY HINGE CROSS ENTROPY HINGE CROSS ENTROPY HINGE

Coverage
90% 0.07 0.60 0 0 0 0
95% 0.18 0.73 0 0 0 0
99% 0.29 0.64 0 0 0 0

Table 14: Comparison of average class coverage gap (CovGap) for cross-entropy and hinge loss used
for CP methods across various coverages for BreakHist dataset w.r.t Avoiding Classes from various
classes.

LAC APS RAPS
CROSS ENTROPY HINGE CROSS ENTROPY HINGE CROSS ENTROPY HINGE

Coverage
90% 0 0.26 0 0 0 0
95% 0 0.1 0 0 0 0
99% 0.55 0.84 0 0 0 0

Table 15: Comparison of average class coverage gap (CovGap) for cross-entropy and hinge loss
used for CP methods across various coverages for CRIC dataset w.r.t Avoiding Confusing Classes.

LAC APS RAPS
CROSS ENTROPY HINGE CROSS ENTROPY HINGE CROSS ENTROPY HINGE

Coverage
90% 0.22 0.94 0 0 0 0
95% 0.01 0.07 0 0 0 0
99% 0.41 0.93 0 0 0 0

Table 16: Comparison of average class coverage gap (CovGap) for cross-entropy and hinge loss used
for CP methods across various coverages for BreakHist dataset w.r.t Avoiding Confusing Classes.

E.3 Avoiding Confusing Classes

In Table 15 & Table 16, we track the average class coverage gap (CovGap) for various CP methods
across 3 coverage guarantees, with the underlying model trained using cross-entropy and hinge loss
on both datasets w.r.t to the second experiment.

Table 15 & Table 16 demonstrates that the average class coverage gap (CovGap) for Hinge loss is
consistently higher than that for CE Loss in all CP methods and coverage settings across both datasets.
Similar to the above experiment,this trend can also be associated to the slight decrease in AUC (76.34
on CRIC dataset & 87.38 on BreakHist) and accuracy (70.02 on CRIC dataset & 82.12 on BreakHist)
when the DieT model when trained to explicitly avoid confusing pairs of classes, compared to the
baseline.
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