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Abstract

Recent advances in foundation models have enabled their
integration into high-stakes clinical settings, particularly in
computational pathology, where domain-specialized FMs
demonstrate strong generalization. However, real-world de-
ployment is constrained by their poorly calibrated uncertainty
awareness and degraded performance in low-data regimes re-
quiring few-shot adaptation strategies, leading to unreliable
and inefficient diagnostic workflows. Conformal Prediction
(CP) is an uncertainty quantification framework that offers
distribution-free, finite-sample coverage guarantees for en-
suring safer deployment in such settings. In this work, we ex-
plore the integration of various CP methods with pathology
foundation models using three few-shot adaption strategies
for classification tasks across two datasets. To assess the clin-
ical effectiveness of these approaches, we propose four novel
metrics aimed at improving clinical reliability and alleviating
diagnostic workload in few-shot settings. Our results demon-
strate that Conformal Prediction methods enhance the reli-
ability of pathology foundation models and offer actionable
uncertainty estimates to enable safe and efficient deployment
in few-shot pathological classification workflows, with the
LAC method achieving the best overall performance. Code
is available at https://github.com/AdiNarendra98/Few-Shot-
PathCP.

Introduction

Foundation Models (FMs) have emerged as a transforma-
tive paradigm, demonstrating remarkable downstream per-
formance across a wide spectrum of applications. Their ca-
pabilities have led to their adoption in high-stakes domains,
including healthcare (Chen et al. 2023; Xie et al. 2024)
where they exhibit strong potential to improve diagnostic ac-
curacy and support clinical decision-making. One such crit-
ical area of healthcare application is computational pathol-
ogy, which leverages machine learning (ML) algorithms to
analyze and interpret tissue slides for enhanced cancer diag-
nosis and treatment. In this field, various Pathology Foun-
dation Models (PFMs) such as Prov-GigaPath (Xu et al.
2024a), UNI (Chen et al. 2024a) and Vichrow (Vorontsov
et al. 2024) have been developed in the recent years and
exhibit impressive generalization across diverse pathology
tasks (Lee et al. 2025; Neidlinger et al. 2025). Despite these
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advancements, deployment of pathology foundation models
into routine clinical practice remains limited.

A significant barrier to real-world deployment is the lim-
ited availability of labeled pathology data, which is expen-
sive and often restricted to proprietary institutional repos-
itories. Moreover, fine-tuning such foundation models de-
mands extensive computing resources and expert domain
knowledge in pathology due to its fine-grained nature, both
of which are impractical in most clinical settings. This ne-
cessitates few-shot adaptation of foundation models to new
tasks using minimal labeled data without full fine-tuning,
which leads to diminished predictive performance compared
to fine-tuned counterparts. Furthermore, these adapted FMs
are constrained by their limited capability to produce well-
calibrated uncertainty estimates, as they rely solely on their
maximum likelihood estimates, like other DL models. This
results in unreliable and poorly calibrated probability out-
puts, forcing clinicians to manually evaluate multiple diag-
nostic possibilities and ultimately leading to reduced clinical
efficiency in such high-stakes workflows.

CP offers a promising approach for uncertainty quantifi-
cation (UQ) in such scenarios, offering a statistically rig-
orous framework with distribution-free, finite-sample cov-
erage guarantees. Unlike conventional probabilistic ap-
proaches, CP provides actionable uncertainty estimates by
producing prediction sets designed to include the true label
with a user-specified confidence threshold. These compact
and uncertainty-calibrated sets enable clinicians to review
lesser diagnostic categories compared to exhaustive reviews
prompted by unreliable single-label predictions, particularly
in few-shot settings. Further, CP is particularly well-suited
to medical applications, as these prediction sets not only in-
clude the most probable diagnosis but also safely include
or exclude other potentially life-threatening conditions. For
example, even when the most likely diagnosis is a common
cold, CP methods account for serious conditions like pneu-
monia, COPD, or Lung cancer by including all possible out-
comes in the prediction sets. Despite these advantages, lim-
ited works have explored the integration of CP methods in
few-shot settings where it can improve diagnostic reliability
and clinical efficiency. Building upon the above motivation,
the main contributions of this work are as follows:

* To the best of our knowledge, this is the first study fo-
cused on integrating split-CP (Lei et al. 2018) methods
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Figure 1: Comparison of the general and Conformal Prediction (CP) based workflows for few-shot adaptation of pathology
foundation models in a classification task. The general workflow results in uncertain predictions and extensive clinical verifi-
cation, whereas CP-based workflow produces compact and calibrated prediction sets which improve diagnostic reliability and

reduce clinical workload.

with few-shot adaptation of pathology foundation models
to enhance reliability and safety in classification tasks.

* We present four novel, clinically aligned evaluation met-
rics designed to assess the real-world effectiveness of CP
approaches in few-shot diagnostic settings.

Related Works

CP is built on the foundational work by Vovk et al. (Vovk,
Gammerman, and Shafer 2005), which has been explored in
both regression (Romano, Patterson, and Candes 2019) and
classification settings (Sadinle, Lei, and Wasserman 2019;
Angelopoulos et al. 2020). Most CP methods use a split
approach (Papadopoulos et al. 2002) with a held-out cali-
bration set. CP methods have been utilized across various
healthcare domains, including MRI (Lu, Angelopoulos, and
Pomerantz 2022), CT scans (Angelopoulos et al. 2024; Zhan
et al. 2020), and other clinical areas (Lu et al. 2022; Zhang
et al. 2023). Some works have also worked on integrating
CP methods into low data settings (Kumar et al. 2022; Fisch
et al. 2021)

While prior studies have examined few-shot adaptation
of foundation models (Xu et al. 2024b), their application
to medical foundation models (Shakeri et al. 2024) re-
mains relatively underexplored. Similarly, limited progress
has been made in integrating CP with foundation mod-
els (Vishwakarma et al. 2025), particularly those developed
for healthcare applications (Silva-Rodriguez, Ben Ayed, and
Dolz 2025; Silva-Rodr’iguez et al. 2025). To the best of our
knowledge, no existing work has investigated the integra-
tion of CP with few-shot adaptation of pathology foundation
models or evaluated their effectiveness in clinical classifica-
tion workflows.

Background Material

In this section, we provide an overview of Conformal Pre-
diction (CP) and various split-CP methods, together with
few-shot learning and the techniques employed in this work.

Conformal Prediction and Procedures

Conformal Prediction is a distribution and model-agnostic
statistical framework that generates prediction sets contain-
ing ground truth labels with a desired coverage guarantee. A
general step-by-step workflow for any conformal prediction,
given an input x & output y, is outlined below:

1. Define a heuristic notion of uncertainty: For classifica-
tion tasks, a typical measure for uncertainty is to consider
the model’s softmax outputs or logits.

2. Define the score function S(z,y) € R: A standard
score function can be the softmax score for the true class.

3. Compute ¢ threshold of the calibration scores: g is cal-

culated as the W quantile of the sorted confor-
mity scores from the calibration set, where n is the number
of examples in the calibration set, « is the error rate (e.g.,
a = 0.05 for a 95% confidence level), and [-] denotes the
ceiling function.

4. Use this ¢ threshold to form the prediction sets C' for
new examples for the prediction set: For a new test input,
a prediction set is obtained by including all classes whose
score meets or exceeds ¢, ensuring the true label is included
with confidence 1 — a.

The various split-CP based methods used in this work and
their respective workflows are mentioned below:

Least Ambiguous set-valued Classifier (LAC) : LAC
(Sadinle, Lei, and Wasserman 2019) aims to construct pre-
diction sets C' from model f and calibration data using the
following steps: First, we calculate the conformal score s;



for each calibration point (X;,Y;), defined as s; = 1 —
f(X;)y,, the 1—softmax score for the true class. Next, we
compute the threshold ¢ as the W quantile of
the sorted conformal scores. Finally, for a new test point
(Xiests Yiest), we construct the prediction set C(Xeg) = {y :
f(Xiest)y > 1—@}, by including classes with scores meeting
or exceeding 1 — q.

Adaptive Prediction Sets (APS) : APS (Romano, Sesia,
and Candes 2020) aims to construct prediction sets C' from
model f and calibration data using the following steps: First,
for a calibration point (X;,Y;), we sort the softmax scores
for all classes in descending order and calculate the con-

formal score s; = Zle f(X;) as the sum of softmax
outputs for all classes up till the true class k. Next, we

compute the threshold ¢ as the W quantile of
the sorted conformal scores. Finally, for a new test point
(Xiests Yiest), we construct the prediction set C'(Xes) =
{fi(Xiest), - - fur(Xiest)} by including all classes until

’

Zle f(Xiest) or the sum of sorted softmax scores exceeds

q.

Regularized Adaptive Prediction Sets (RAPS) : RAPS
(Angelopoulos et al. 2020) aims to constructs prediction
sets C' from model f and calibration data using the fol-
lowing steps: First, for a calibration point (X, Y;), we sort
the softmax scores in descending order and calculate the
conformal score as s; = Zle f(X;) + A, where a reg-
ularization term A is added for classes beyond a random-
ized threshold (krg). Next, we compute the threshold ¢ as

the [n+DU=a)] quantile of the sorted conformal scores.
Finally, for a new test point (Xes, Yiest), We construct the
prediction set C'(Xeq) = {f1(Xu/est), ooy Jur(Xiest) } by in-
cluding all the classes, until Zle f(Xiest)+A or the sum
of class-wise sorted softmax scores for all classes, appended
with a regularization term exceeds g.

Few-Shot Learning and Adaptation Strategies

The term few-shot adaptation refers to a specific scenario
within the broader few-shot learning (FSL) paradigm, where
a model adapts to new tasks without explicit fine-tuning.
This is particularly beneficial in data-scarce domains such
as healthcare where labeled data are limited or expensive to
obtain. In the standard FSL formulation, an N-way K-shot
task involves learning from K labeled samples of each of
N classes (Vinyals et al. 2016). For each few-shot task, the
model is trained on a randomly sampled subset of classes
known as the support set (each containing K examples) and
evaluated on a corresponding subset of unseen examples
called the query set. The various few-shot frameworks ex-
plored in this work and their standard workflows are outlined
below:

Baseline: The Baseline method (Chen et al. 2019) em-
ploys a pre-trained feature extractor that remains frozen
while a linear classifier is trained on embeddings derived
from a small support set. Classification is performed using
a softmax operation over the linear layer outputs, with only

the classifier parameters being updated. This setup enables
efficient adaptation to novel classes with minimal labeled
data.

In a few-shot classification task, a pre-trained pathology
foundation model serves as a fixed encoder to extract feature
embeddings. For each training trial, K samples per class
are randomly selected from a disjoint support pool to con-
struct the support set according to the K -shot configuration.
To enhance generalization, random augmentations such as
random cropping and horizontal flipping are applied to the
support images. These augmented samples are then passed
through the frozen encoder to obtain feature representations,
upon which a linear classifier is trained using cross-entropy
loss. During this stage, the encoder remains fixed and only
the classifier weights are updated. Finally, the trained clas-
sifier is evaluated on a corresponding query set, randomly
sampled from a disjoint query pool to assess few-shot per-
formance.

Baseline++: The Baseline++ method (Chen et al. 2019)
extends the standard Baseline framework by replacing the
linear classifier with a cosine similarity-based classifier to
improve feature discrimination and reduce intra-class vari-
ability. Classification is performed by computing the co-
sine similarity between the input feature embeddings and
the class weight vectors, followed by a softmax operation to
obtain class probabilities. This cosine-based formulation en-
courages tighter clustering of features belonging to the same
class, resulting in more stable and discriminative represen-
tations in few-shot settings.

The Baseline++ method follows the same training proce-
dure as the Baseline, except for utilizng a cosine similarity-
based classifier instead of the linear classifier. The predic-
tions are obtained by computing cosine similarities between
input embeddings and class weight vectors, followed by a
softmax normalization.

Prototypical Networks (ProtoNets): PrototNets (Snell,
Swersky, and Zemel 2017) is a metric-based few-shot learn-
ing approach that represents each class by the mean of its
support embeddings (class prototype) and classifies query
samples based on their distance to these prototypes, where
smaller distances indicate higher similarity. This distance
based formulation allows efficient adaptation to unseen
classes using only a few labeled samples, without the need
for fine-tuning the encoder.

The ProtoNets method also follows the same training pro-
cedure as the Baseline, differing only in the classification
strategy. Instead of training a linear classifier, we use the
feature embeddings from the frozen encoder to compute the
class prototypes which is the mean of the embeddings be-
longing to each class in the support set. During inference,
predictions for query samples are obtained by computing
Euclidean distances to these class prototypes, followed by
a softmax over the negative distances to derive class proba-
bilities.

Methodology

In this section, we outline the procedure used to integrate CP
with few-shot adaptation techniques for classification tasks,



Although CP narrows down the
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Figure 2: Overview of the proposed clinically aligned metrics (MRTL, RTC, R1CR, ESR) used to evaluate the effectiveness of
Conformal Prediction methods in few-shot settings.

along with the proposed novel clinical evaluation metrics.

CP for Few-Shot Adaptation Techniques

In this subsection, we outline the step-by-step procedure for
integrating the CP methods with the utilized few-shot tech-
niques for this work.

Baseline and Baseline++ with CP : The CP integration
of the Baseline and Baseline++ methods incorporates un-
certainty estimation into the few-shot classification frame-
work while retaining the frozen encoder based on a pathol-
ogy foundation model and standard classifier setup. For each
training trial, K samples per class are selected from a dis-
joint support pool to form the support set according to the
K -shot configuration. Meanwhile, additional samples from
separate image pools are used to construct the calibration
and query sets for conformal threshold estimation and eval-
vation. The support samples are passed through the frozen
encoder to extract feature embeddings, which are then used
to train the classifier following their standard training pro-
cedures. Each calibration sample is subsequently processed
through the frozen encoder and trained classifier to compute
nonconformity scores based on class probabilities, which
define the threshold for prediction set construction. Finally,
each query image is evaluated using this threshold to gen-
erate calibrated prediction sets, yielding uncertainty-aware
and well-calibrated few-shot classification performance.

Prototypical Networks with CP : The CP extension of
Prototypical Networks builds upon the frozen encoder based
on a pathology foundation model and prototype-based clas-
sifier to incorporate uncertainty estimation into the few-shot
classification framework. Each trial begins with the pre-
trained encoder and class prototypes computed during the

3. Rank 1 Containment Rate (R1CR)

> Avg. no. of incorrect diagnosis to be | > Proportion of prediction sets with

reviewed before the correct diagnosis.

> Higher R1CR =+ Reduced clinical

4. Effective Singleton Rate (ESR)

> Proportion of prediction sets which
true label at rank 1. are singletons with only the true label.
> Higher ESR ==+ Quicker clinical

cognitive load. decision-making.

standard training procedure. A separate calibration set is
sampled from a held-out pool distinct from the support and
query sets. The calibration images are passed through the en-
coder to extract embeddings, and nonconformity scores are
computed based on their distances to the corresponding class
prototypes. These scores are then used to determine a con-
formal threshold at the desired confidence level to produce
prediction sets. Finally, each query image is evaluated using
this threshold to generate calibrated prediction sets, yield-
ing uncertainty-aware and well-calibrated few-shot classifi-
cation performance.

Clinically Aligned Evaluation Metrics

While standard CP metrics such as coverage and average set
size quantify of the statistical guarantees and compactness
of the prediction sets, they do not adequately reflect their
clinical utility in few-shot diagnostic settings. The clinical
effectiveness of a prediction set is critically dependent on
the positional rank of the true label, as it directly influences
the diagnostic workload and overall patient outcomes. For
example, a compact prediction set may position the correct
diagnosis at a lower rank, necessitating review of multiple
incorrect labels before arriving at the true label. To address
this limitation, we propose four novel clinically aligned met-
rics designed to assess the real-world effectiveness of CP
methods in few-shot diagnostic tasks, as detailed below and
shown in Figure 2.

Mean Rank of True Label (MRTL): This denotes the av-
erage positional index of the correct class label across all
prediction sets. If n is the total number of test samples and
rank(y;) is the position (rank) of the true label within the
prediction set, MRTL is defined asineq 1 :



Baseline Baseline++ ProtoNets
Cov:90 Cov:95 Cov:90 Covi95 Cov:90 Covi95

Model  CPMethod  Metric K=1 K=5 K=10 K=1 K=5 K=10 K=1 K=5 K=10 K=1 K=5 K=10 K=1 K=5 K=10 K=1 K=5 K=10
Accuracy | 0070.00 0.10:0.01 0.14£0.02 | 0.06£0.00 0080.01 0.10:0.01 | 006001 0072005 008%0.02 | 0.06:001 006008 007:0.03 | 0.08:0.08 0.09£0.04 0.09:0.04 | 0.07:0.03 0.06:0.08 0.06£0.08
LAC Coverage | 0.890.01 0.90:0.02 0.89£0.01 | 0.95:0.01 095001 0.94:0.01 | 0.89£0.02  090:001 090002 | 0942007 095:0.01  095:0.08 | 0.90:0.02 0.90:0.01 090:0.01 | 0.95:0.01 0.95:0.08 0942008
Avg.SetSize | 17.150.5 125809 102806 | 189204 155809 133208 | 165807 16112  158%12 | 188407  186+0.6  17.9:0.7 | 189302 184%0.0 183:0.1 | 19.5:0.5 192804  19.1x0.2
NI Accuracy | 0.06£0.00 0.09:0.01 0.1120.01 | 0.06£0.00 007001 0.08:0.01 | 0.06£0.00 0.06£0.01 0.070.03 | 0.06£0.00 006003 0070.01 | 0.08:0.01 0.09x001 0.09:0.02 | 0.070.01 0.06:0.03 0.06£0.00
APS Coverage | 0.93:0.01 0928001 0.94£0.01 | 0.9820.01 0.96:0.01 097:0.01 | 0.92£0.02 091002 092004 | 0972001 0972002 0972006 | 0.9240.01 0.92:0.03 093:0.04 | 095:0.09 0.9620.08 0.96£0.05
Avg.SetSize | 18.120.6 141208  126:0.6 | 20.0:0.5 167209 151206 | 17309  174%1.1 171202 | 196206 193203  19.1202 | I18820.6 184208 183202 | 198204 19.6:04 19.5:0.6
Accuracy | 0.06£0.00 0.08:0.01 0.09:0.01 | 0.06£0.00 007001 0.08:0.01 | 0.06£001 0062002 007001 | 0.06:0.04 006001 0.0620.08 | 0.08:0.09 0.09£0.04 0.09:0.02 | 0.06:0.01 0.06£0.08 0.09£0.02
RAPS Coverage | 091£0.01 0.900.01 0.90£0.02 | 0.95:001 095:0.01 0.94:0.01 | 0.90£0.02 0902004 091001 | 095:0.02 091002  096+0.05 | 0.91:0.02 0.90:0.04 091£0.02 | 0.94:0.01 0.96:0.05 0912002
Avg.SetSize | 174206 134209 111207 | 19205 16209 143209 | 170607 16512 16210 | 18810 18910  188+1.0 | 183202 182+0.6 18.2:0.5 | 194202 195804 194202
Accuracy | 0.06£0.00 0.08:0.01 0.1120.01 | 0.06£0.00 007001 0.08:0.01 | 0.06£001 0062001 006008 | 0.06:003 006002 00620.04 | 0.160.02 022£0.02 024x0.01 | 0.10:0.06 0.11£0.08 0.1120.08
LAC Coverage | 090£0.01 0.90:0.02 0.90£0.04 | 0.95:0.00 094£0.07 0.95:0.02 | 0.89£0.08 090:001  0900.02 | 0942007 095002  095:0.02 | 0.90:0.01 0.90£0.02 0.90:0.02 | 0.930.01 0.94£0.02 095002
Avg.SetSize | 17080.5 134206 113207 | 188204 145507 119207 | 174211  168%1.6  161£1.6 | 19210  184%l4 181204 | 148206 146204 145207 | 168205 166207 162:0.8
Phik Accuracy | 0.06£0.00 0.07:0.01 0.09:0.01 | 0.06£0.00 0.060.00 0.07:0.01 | 0.06£001 0062002 006006 | 0.06£0.02 006002  0.060.02 | 0.10:0.06 0.11£0.08 0.110.08 | 0.06:0.01 0.06:0.02 0.12£0.02
ikon  sps Coverage | 0.930.02  0.92:0.01 0.93:0.01 | 0.96:0.01 097002 0.97:0.01 | 0.92£0.02 093003 093002 | 0.97£0.02 097002  09740.05 | 0.93:0.01 0942002 0.94%0.01 | 0.960.01 0.97:0.05 097001
Avg. SetSize | 18.0:0.7 145806  127+0.6 | 199+0.5 172606 156206 | 187208  17.9:03  17.5:0.01 | 19710 197809  197+10 | 168:0.5 166:0.7 162:08 | 181305 179404 17.5:07
Accuracy | 0.06£0.00 0.07+0.01 0.08£0.01 | 0.06£0.00 0.06£0.00 0.07:0.00 | 0.06£0.04 0062004 0.06£0.08 | 0.06£0.03 0062000 0060.00 | 0.10£0.06 0.11£0.08 0.12£0.20 | 0.06£0.00 0.06£0.01 0.12£0.10
RAPS Coverage | 09120.01 0.91£0.03 0.92£0.04 | 0.9620.03 0960.03 0.96£0.03 | 0.90£002 0912001 091002 | 095:0.03 095:0.02  095:0.02 | 0.9120.02 0912004 092+0.01 | 0.96£0.03 0.95:0.04 0.95£0.01
Avg.SetSize | 173206 13.7:0.6 119807 | 192205 16580.6 150207 | 179805  17.1202  17.120.8 | 18810 190207  188£1.0 | 162209 151208 151203 | 17.2:0.9 168203 161202
Accuracy | 0.06£0.01 0.09+0.01 0.13£0.01 | 0.06£0.00 007001 0.09+0.01 | 0.06£001 0.06£003 0062002 | 0.06:0.00 0062002  0.060.00 | 0.07:0.02 0.08£0.02 0.0820.01 | 0.80£0.03 0.14£0.02
LAC Coverage | 0.890.08 0.900.03 0.90£0.08 | 0.9420.07 0940.08 0.95:0.01 | 0.89£0.02 0.90:001 090001 | 0942008 095:0.02  095:0.01 | 0.90:0.01 0.90:0.03 090£0.02 | 0.94£0.08 0. 0.95£0.03
Avg.SetSize | 170507 128208  10.5:08 | 189206 15909 13.6:0.9 | 16542067 16362014 16132028 | 18.6420.6 1852207 1849206 | 184206 18.10.8 181203 | 169:0.5 158802  14820.6
HibouB Accuracy | 006£0.00 0.08:0.01 0.10£0.01 | 0.06£0.00 007001 0.08:0.01 | 0.06£001 0.06£001 006002 | 0.06£0.00 006001  0.060.00 | 0.1820.02 028002 031%0.02 | 0.0740.10 0.07£0.09 0.080.04
ibou-B — \pg Coverage | 0920.01 0.93:0.04 0.93:0.06 | 0.97£0.01 096008 0.97:0.03 | 0.93£0.02  093z001 093001 | 0.97£001 097002  09740.02 | 0.93:0.01 0.94x001 0.94£0.20 | 0.96£0.02 0.96:0.03 0.960.05
Avg.SetSize | 18.150.8  14.0:0.8 124207 | 20.0:06 169409 151208 | I17.120.67 16924019 16.18+0.28 | 1976+0.63 19.74£0.95 19.68:0.06 | 185824 133%0.6 121206 | 199805 197204  195:0.9
Accuracy | 0.06£0.00 0.07:0.01 0.08£0.01 | 0.06£0.00 007000 0.08:0.01 | 0.06£001 006001 0062002 | 0.06:001 0062001 0.060.01 | 0.062040 0.07£0.10 0.0820.20 | 0.06x0.00 0.06£0.01 0.06£0.01
RAPS Coverage | 09120.01 0.91:0.04 0912007 | 0.95:0.03 0960.03 0.95:0.01 | 0912002 0912002  0910.03 | 095:0.03 095£0.02  095:0.03 | 0.90:0.05 090:0.08 091£0.10 | 0.95£0.02 0.95:0.03 095:0.04
Avg.SetSize | 174208 134510 111207 | 192206  164£0.8 144208 | 16952075 1649120 1632£1.01 | 18980.61 18.940.07 18.77+0.03 | 17.0605 173209 168204 | 186204 168203  18320.6

Table 1: Comparison of Accuracy, Emprical Coverage and Average Set Size for Baseline, Baseline++, and ProtoNets methods
with three CP methods and pathology foundation models across varying coverage and K-shot settings on the HiCervix dataset.

1 n
MRTL = — k(i 1
ni_zlran (yi) )

This metric indicates how highly a CP method prioritizes
the correct diagnosis within its prediction set, enabling the
clinician to view the right diagnosis at the earliest. A lower
MRTL implies that, the CP method consistently assigns a
higher rank to the true label in the prediction set. This helps
to shorten diagnostic turnaround time and streamline clinical
decision-making.

Rank to Correct (RTC): This is an accompanying metric
with MRTL which denotes the average number of incorrect
labels preceding the correct labels within the prediction sets.
RTC is defined as ineq 2 :

n

RTC = % > (rank(y;) — 1)

i=1

@

This metric represents a measure of diagnostic effort, in-
dicating the average number of incorrect diagnosis a clin-
ician must review before arriving at the correct diagnosis.
A lower RTC implies that, the CP method effectively pri-
oritizes the true diagnosis in its prediction set. This helps
to shorten time-to-correct diagnosis and results in efficient
clinical workflows.

Rank 1 Containment Rate (RICR): Rank 1 Contain-
ment Rate (RICR) is the proportion of test samples for
which the true label appears at highest ranking position (rank
1) within the prediction set. If rank(y;) is the position (rank)
of the true label within the prediction set, RICR is defined
asineq 3:

1 n
RICR = — > " 8[rank(y;) =1] 3)

=1

where n is the total number of test samples and ¢ denotes
an indicator function.

This metric indicates how consistently the CP method
presents the correct diagnosis at the highest positional in-
dex (rank 1) in the prediction sets, enabling the clinician to
identify the right diagnosis with minimal effort. A higher
R1CR implies that, the CP method reliably places the true
diagnosis at the highest position in the prediction sets. This
results to reduce cognitive workload burden and diagnostic
ambiguity for clinicians.

Effective Singleton Rate (ESR): Effective Singleton Rate
denotes the proportion of test samples for which the predic-
tion set is singleton (i.e., contains exactly one label) which
is the true label. For (x;, y;) representing a test sample and
its true label, C(x;) representing its predicted conformal set
and n is total number of test samples, ESR is defined as in
eq 4:

n

25[\0(%” =1 Ay €C(x)]

i=1

1

ESR = — 4
n

where |C(x;)| denotes the cardinality of the prediction set
for the it sample, and § denotes an indicator function.

This metric represents how frequently the CP method pro-
duces a singleton prediction set containing only the correct
diagnosis, enabling the clinician to arrive at the right diagno-
sis immediately. A higher ESR implies that the CP method
consistently produces precise and reliable prediction sets.
This results in faster clinical decision-making and improved
patient outcomes.

Experimental Setup

This section outlines the datasets, pathology foundation
models, implementation, and standard metrics for evaluation
across the two pathological classification tasks in this study.



Bascline Baseline++ ProtoNets
Cov:90 Cov:95 Cov:95 Cov:90 Cov:95
Model P Method  Metric | ™7y K=5 K=10 | K=l K=5 K=1 K=10 | K=l K=5 K=10 | K=l K=5 K=10 | K=l K=5 K=10
MRIL | 95:03  73:04 61303 | 10.0:02 8404 10.120.8 9.2:0.1 10.1:03 10204 10.0:03 | 9.7:03  87:02 9.90.1
LAC RTC | 85:03  63:04  5.1:03 | 9.0:02 9.10.8 8.210.1 9.140.3 9.240.4 9003 8703 7.7x02 8.9£0.1
RICR | 0.07+0.00 0.10:0.01  0.14x0.02 1| 006001 0.07+0.01 | 0.06:0.00  0.06:0.00  0.06£0.00 0.06+0.03 0.06+0.03
ESR | 0.00£0.01 0012001  0.03:0.01 5 | 0.00£0.01 X 0.00£0.04 | 0.00:0.00  0.00:0.00  0.0120.01 0.00£0.00 0. 0.00£0.01
MRIL | 10003 79804  7.1x03 ! 8.2+0.3 9.9+0.4 9.9+0.3 9.240.5 9.9+0.4 10.4£0.8 102:03 | 9.8:0.1  8.9:04 9803 9.9:08  9.9+0.9
UNI APS RTC | 90403 6904 61303 | 95+02 0:04 72403 8.9+0.4 8.9:0.3 8.2+0.5 8.8+0.4 9.4%0.8 92403 8.8:0.1  7.9+04 88103 8908  8.9:0.9
; RICR | 0.06:0.00 0.09:0.01 0.1120.01 | 0.06£0.00 0.07+0.01 008001 | 0.06£0.00 006001 007002 | 006£0.00  0.06£0.01  0.06£0.08 | 0.06£0.01 0.06:0.02 0.06£0.01  0.06:0.05 0.06+0.03
ESR | 0.00:0.00 0012000 002:0.01 | 0.00:0.00 0.02:0.02 002:0.08 | 0.00£0.00  0.00:0.00 001002 | 0002000  0.00£000 000001 | 0.00£0.00 0.00£0.00 0.00£0.00 0.01:0.01  0.000.01
MRTL | 9.8£03  7.8805  6.6£0.4 | 103302 89:0.4  8.0+0.4 9.8+0.4 9.6+0.6 10.4+0.6 10303 103£0.2 102405 | 9.8:02 9603  95:0.1 | 99+0.1  98+0.1  9.8+0.1
RAPS RTC | 88:03  68:0.5  56:04 | 93:02 79404  7.080.4 8.8+0.4 8.6+0.6 9.4£0.6 93+0.3 9.320.2 9.2+0.5 8802  86:0.3  85:0.1 | 89:0.1  88:0.1  8.80.1
APS RICR | 0.06:0.00 0.08:0.01 0.09:0.01 | 0.06£0.00 0.07:0.01 008001 | 0.06:001 0062003 007001 | 006:0.00  0.06:0.00  0.06£0.08 | 0.06:0.00 0.060.03 0.060.01 | 0.06:0.00 0.06£0.08 0.06:0.01
ESR | 0.00:0.00 001x0.02 002:0.00 | 0.00:0.00 0.01:0.01 001009 | 0.00:0.00  0.00:0.00  0.000.02 | 000000 000000  0.00£0.00 | 0.00:0.00 0.00£0.02 0.00:0.02 | 0.00£0.00 0.00:0.00 0.00:0.00
MRIL | 9303  7.6£03 65803 | 9902 87203  79+03 9.120.7 9.140.4 9.0£0.1 10.120.4 10.00.8 101202 | 85:L1  54%02 47201 | 9506 56203 49401
LAC RTC | 83:03 6603 55804 | 8902 77203  69:03 8.1£0.7 8.1:0.4 8.0£0.1 9.1:0.4 9.00.8 9.1£0.2 75511 44302 37300 | 85:06 46203  3.9:0.1
g RICR | 0.06:0.00 0.08:0.01 0.11:0.01 | 0.06£0.00 0.07:0.01 008001 | 006£001 0062001 0062001 | 006:0.03  006:001  0.06£0.00 | 0.10:0.02 0.30:0.02 0402002 | 0.170.02 027002 0.30£0.02
ESR | 0.00:0.00 0.02:0.002 0.06:0.05 | 0.00:0.00 0.00:0.01 002:0.02 | 0.00:0.00  0.00:0.00  0.000.00 | 000000  0.00:0.00  0.00£0.00 | 0.01:0.01 0.01£0.02 0.02:0.01 001008  0.04:0.05
MRTL | 99:03  80:03  7.2:03 | 104202 9203 84203 | 104204 10.3:0.2 10.2:0.4 10.6:0.4 10.4:0.4 104202 | 7704  7.6:03
Phikon ;g RTC | 89+03 7003 6203 | 94%02  8I1x03  74x03 9302 9302 9.2+0.4 9.6+0.4 9.4+0.4 9.4£0.2 6704 66£03
RICR | 0.06:0.00 0.07:0.01 0.09:0.01 | 0.06£0.00 0.060.20 007001 | 006£0.00 006000  0.06£001 | 006:0.00  006£0.00  0.06£0.00 | 0.08£0.01 0.11:0.01 0.09:0.01 | 0.01:0.01 001002 0. 2
ESR | 0.00:0.00 001:0.02  0.03:0.08 | 0.00£0.00 0.00:0.00 0.02:0.01 | 0.00:0.00  0.00:0.00  0.00£0.00 | 000000  0.00:0.00  0.00+0.00 | 0.02:0.01 0.01+0.08 0.02:0.08 | 0.00£0.00 0.000.01 0.01+0.08
MRTL | 98803 79803  7.0:04 | 103202 91204 83203 | 10.3:0.9 9.7+0.4 9.4£0.9 103206 10320.6 103206 | 10.1204  7.8504  7.0:04 | 103202 88204  83:03
RAPS RTC | 88203  69:03  60:04 | 93:02  80:03 7303 93209 8.740.4 8.410.9 9.3£0.6 9.340.6 9.3£0.6 91304 68804  60:0.4 | 93102 78204  73%03
RICR | 0.06:0.00 0.07+0.01 0.08:0.01 | 0.06£0.00 0.07+0.00 0.08+0.01 | 0.06£001  006£0.01  006£001 | 006:0.00  0.06£0.00  0.06£0.00 | 0.03£0.01 0.000.00 003001 | 0.020.01 0.00£0.00 0.02:0.01
ESR | 0.00:0.00 0.00:0.00 001001 | 0.00£0.00 0.00:0.00 0.00:0.06 | 0.00+0.00  0.000.00  0.00+0.01 | 000000  0.000.00  0.00+0.00 | 0.00+0.00 0.00£0.00 0.00x0.01 | 0.00£0.00 0.00+0.00 0.000.00
MRIL | 9404 74204 62804 | 10.0:0.3 86204  7.5:04 | 948041  945:079  10.05:0.80 | 10.09:0.34 10242037 10432040 | 9.8:0.3 88802 86202 | 95803  57:02  4.9:08
LAC RTC | 84204 64204  52:04 | 90:03 76404  65:0.4 | 837:0.41  833:078  892:078 | 9.03:0.34  0.18:0.36  937:0.39 | 88:03  78:02  7.6:02 | 8503 47202 39108
RICR | 0.06:0.01 0.09:0.01 0.13:0.01 | 0.06£0.00 0.07+0.01 009001 | 0.06£001  0.06£0.01  0.06£001 | 006:0.00  0.06£0.00  0.06£0.00 | 0.01x0.02 0.02:0.02 0.030.02 | 0.04£0.02 0.070.02 0.90:0.02
ESR | 0.00:0.01 001£0.05 0.03:0.01 | 0.00£0.00 0.01:0.03 0.01+0.05 | 0.000+0.001 0.000+0.000 0.000+0.001 | 0.000:0.000 0.0000.000 0.000+0.000 | 0.0040.00 0.02£0.02 0.05:0.09 | 0.00£0.00 0.00+0.00 0.000.00
MRIL | 9.9:04  7.9804  7.0:04 | 104202 9.1204  82:04 | 948041  945:0.79  1005:0.80 | 10.39:025 10.40:0.34  1051:034 | 9.1:L1 59807  49:0.1 | 101202 99004  92:03
HibouB  ,po RTC | 88+04 6904  6.0:0.4 | 94%02  80:04  7.1+04 | 837+041  833:078  892:0.78 | 937025  937+035  9.49:034 | 8.I+l1 49807  39:01 | 91202  93:0.1 8203
RICR | 0.06:0.00 0.08+0.01 0.10:0.01 | 0.06£0.00 0.07+0.01 0.10+0.01 | 0.06£0.01  0.06£0.01  0.06£0.01 | 0.06£0.00  0.06£0.00  0.06£0.00 | 0.08£0.02 0.10:0.30 0.110.08 | 0.010.02 0.02+0.01 0.02:0.08
ESR | 0.00:0.00 0.01x0.01 0.02:0.06 | 0.000.00 0.00£0.00 0.02:0.01 | 0.0000.001 0.000£0.000 0.000+0.001 | 0.0000.000 0.000£0.000 0.000£0.000 | 0.01£0.02 0.04x0.02 0.05:0.09 | 0.00£0.00 0.00:0.01 0.010.01
MRTL | 98805 79805  6.7+03 | 103:0.3  9.120.4  83%03 | 978041  9.58:0.61  1043:0.62 | 1029:031  1028:0.52 10512047 | 10.1:0.4  8.8:04  86:0.4 | 10402 103:0.1 10.320.1
RAPS RTC | 88204  69:0.5  57+04 | 93:03  8.1+04  7.1x0.4 | 8.67+0.40  846+0.61 931061 | 9242031  923+051 9458046 | 9.1x04 78204  7.6504 | 94302  93+0.1  9.3:0.1
; RICR | 0.06:0.00 0.07:0.01  0.08£0.01 | 0.06:0.00 0.06:0.00 0.07:0.00 | 0.06£0.01  0.06£0.01  006:0.01 | 0.06£0.00  0.06£0.00  0.06:0.00 | 0.03:0.01 0.04£0.20 0.05:0.08 | 0.02£0.03 0.020.06 0.020.06
ESR | 0.00:0.00 0012001 001£0.03 | 0.00:0.00 0.00:0.00 000:0.01 | 0.00:0.00  0.00:0.00  0.000.00 | 000000 000000  0.00£0.00 | 0.00:0.00 0.01x0.01 0.05:0.08 | 0.00£0.00 0.00:0.00 0.00£0.00

Table 2: Comparison of MRTL, RTC, R1CR, and ESR for Baseline, Baseline++, and ProtoNets methods with three CP methods

and pathology foundation models across varying coverage and K-shot settings on the HiCervix dataset.

Datasets

We utilize two publicly available pathology datasets namely,
HiCervix (Cai et al. 2024) and HMU-GC-HE-30K (Lou
et al. 2025) to assess few-shot learning performance across
distinct pathological classification tasks derived from differ-
ent organs.

The HiCervix dataset is the largest publicly-available cer-
vical cytology dataset with over 40,229 images cell images
extracted from whole slide images and consists of 21 classes
on the second level of annotation which we use for cervical
cancer cell classification in this study. The HMU-GC-HE-
30K dataset contains over 30,000 Hematoxylin and Eosin
(H&E) stained gastric tissue images divided into 9 cate-
gories and is used for a gastric tissue classification task.

Pathology Foundation Models

This section provides an overview of the UNI (Chen et al.
2024b), Phikon (Filiot et al. 2023), and Hibou-B (Nechaev,
Pchelnikov, and Ivanova 2024) pathology foundation mod-
els in this work and their training frameworks.

UNI utilizes the DINOv2 (Oquab et al. 2024) framework,
a self-supervised learning (SSL) method that integrates self-
distillation with masked image modeling (MIM), to pre-
train a ViT-L model on the large-scale Mass-100K dataset.
Phikon employs the iBOT (Zhou et al. 2022) framework, a
self-supervised learning (SSL) paradigm that combines self-
distillation with masked image modeling (MIM) to pretrain
a ViT-B model on a TCGA based pathology dataset. Hibou-
B leverages the DINOv2 (Oquab et al. 2024) self-supervised
learning (SSL) framework to pretrain a ViT-based model on
a proprietary dataset.

Standard CP Evaluation Metrics

In addition to the proposed clinically aligned metrics, we
also employ standard CP evaluation metrics in this work. For
a CP workflow, let (z;, y;) denote a test sample and C(x;) its
corresponding prediction set; the standard evaluation met-
rics are defined as follows:

Empirical Coverage: It represents the assurance provided
by a CP method that the true label will be included in the
prediction set with a probability of 1-«, where « is the error
rate. For example, with 95% coverage (a=0.05), the method
ensures that the true label is included in the prediction set
for at least 95% of test data points.. It is defined in eq 5:

. IR
Empirical Coverage = -~ Zl 8ly; € C(x;)] 5)
i=
where n is the total number of test samples and ¢ denotes
an indicator function that is 1 when its argument is true and
0 otherwise.

Average Set Size: This metric represents the average
number of labels in the prediction sets, i.e., the average car-
dinality of the conformal prediction sets. It is defined in eq 6:

1 n
A Set Size = — C(z;
verage Set Size = — ; |C(z;)]
where |C(x;)| denotes the cardinality of the prediction set
for the i*" sample, and 7 is the total number of test samples.

(6)

Implementation Details

We assess the integration of CP within the few-shot adapta-
tion of pathology foundation models across two diagnostic



Baseline Baseline++ ProtoNets
Cov:90 Cov:95 Cov:90 Cov:95 Cov:90 Cov:95
Model  CP Method Metric | ™) K=5 K=10 | K=l K=5 K=10 | K=l K=5 K=10 | K=l K=5 K=10 | K=l K=5 K=10 | K=l K=5 K=10
Accuracy | 0188002  030£003 037003 | 0162001 024003  030:0.03 | 0182003 0262005  029:0.05 | 0172002 0212004 026005 | 0143001 016002 0.18£0.03 | 014001 0.15£0.02 0.17+0.03
LAC Coverage | 0.90:001  090:001 090000 | 095:000  095:000 095000 | 0902002 0902002  0.89£002 | 095:002 0952002 094001 | 090002 091002 0.92£0.02 | 0.95:001 0962001 0.97+0.01
Avg.SetSize | 530:040  3.80£020  320:020 | 6.00:030 480020 420020 | 540040  4.40:040  370:040 | 6.00:040  5.10:050  450£040 | 9000 8604  82:05 | 90400  88:04  8.5:0.5
NI Accuracy | 0158001 0212002 024002 | 0142000 017001 0202002 | 0.15:001  020:0.04  022:004 | 0142000 0172002 019004 | 015001 016002 0.18:0.03 | 0.15£001 0.16x0.02 0.18:0.03
APS Coverage | 0.98:0.01  097+001 098000 | 100:0.00 099000 0992000 | 097002  0.96:0.01  0.96:0.01 | 0.99:0.00  098:001 098001 | 093001 0942002 0.95:0.02 | 0.96£0.01 097+0.01 0.98£0.01
Avg. SetSize | 6.40:030  530:020 500010 | 7.00:0.10  6.10£020  580:0.10 | 640040  530:030  5.00:040 | 690:0.10  620:030  580£050 | 9000 8704 84205 | 90400  88:04  85:05
Accuracy | 0.07£0.02  025:003 032003 | 0152001 021002  026:0.03 | 0162002  023:0.05 0258003 | 0.15:001  0.19:004 022004 | 0.1430.01 015002 0.17£0.03 | 0.140.01 0.15£002 0.17£0.03
RAPS Coverage | 093:001  093x001 093001 | 099001 097000 096000 | 093002  093:0.02  093:001 | 097:001  096x001 096001 | 091002 092002 0.93:0.02 | 0.95:001 096£0.01 0.97:0.01
Avg. SetSize | 5.90:040  440:020 370020 | 6.60£030  530:020  470:020 | 580040  4.70£0.40  440:030 | 650030 5604040 5104040 | 8303  8.0:0.5 77406 | 8.5:02 8304  8.0:0.5
Accuracy | 020:0.03  028£003 034003 | 0182002  024%0.03 0282003 | 020003  025:0.04  030:0.04 | 0.1820.02 023003 026004 | 0.070.02 009002 0.11£0.03 [ 0.0740.02 008002 0.09:0.03
LAC Coverage | 0.897+0.005 0.898£0.005 0.8970.005 | 0.9470.004 0.947+0.004 0.947:0.004 | 0.89320.024 0.892:0.019 0.892£0.018 | 0942£0.017 0.942£0.014 0.9390015 | 0.900.01 091002 0.92:0.02 | 0.95:001 0.96£0.01 0.97+0.01
Avg.SetSize | 5208036 396£023  335:0.16 | 589027  4.84+024 4253019 | 5243051 4072039  3.60:030 | 589:041  493:034 445033 | 90400 75504  68:0.6 | 90500 8303  7.9:0.5
Phik Accuracy | 0.17:0.02 0212002 024002 | 015:001 0184002 020002 | 0.17:002 020003 0232003 | 0.15:001 0185003 021003 | 0.08:0.02 009002 0.11£0.03 | 0.08£0.02 009002 0.10:0.03
kon Aps Coverage | 097120012 0.960£0.005 0.9670.004 | 0.9980.003 0.986£0.003 0.98520.003 | 0.97120.019 0959:0.011 0960£0.011 | 0.995:0.008 0.985:0.009 0.9800.008 | 0.930.01 0942002 0.95:0.02 | 0.96£0.01 097£0.01 0.98£0.01
Avg. SetSize | 630:033  5.18:021  483:0.12 | 692:0.12 603024 5582014 | 6332047  535:043 4925036 | 682:025  6.10:0.44 5505040 | 9000 8103  7.6:05 | 90:00  84x03 8104
Accuracy | 0182002 025002 0302003 | 0162002 0212002  025:003 | 0182003 0232004 026003 | 0174002 020003 0232002 | 0.07:0.02 0.08:0.02 0.10£0.03 | 0.07:0.02 0.0820.02 009003
RAPS Coverage | 0932£0.006 0.9270.005  0.926£0.005 | 0.978x0.011 0.9650.003 0.96320.003 | 0.926x0.021 0921:0.017 0929:0.015 | 0.967£0.016 0.960£0.014 0.961£0.012 | 0.91+0.01 092002 0.93:0.02 | 0.95:001 0.96£0.01 0.97+0.01
Avg. SetSize | 5732031  445:023 3845016 | 6442030 5334023 4712017 | 567:047  4.62:041 4222034 | 6282039 5462045 498035 | 85402 7904  73:05 | 88402  82:03  7.8:04
Accuracy | 020:0.03  030£003 0374003 | 018002 025003 0302003 | 0.1820.02 0258005  027£005 | 072002  022:004 0254005 | 0262004 031005 0342006 | 0265004 030005 0.33£0.06
LAC Coverage | 0903:0.005 0902£0.005 0.9020.004 | 0.9520.005 0.952+0.003 0.951:0.004 | 0.895:0.02  0.8990.02 09042002 | 0943:0.018 09490015 09500015 | 0.900.01 091002 0.92£0.02 | 0.95:001 0.96£0.01 0.97+0.01
Avg. SetSize | 523:034  3.89:026  3.30:0.19 | 594£027  483:029 4222020 | 541028  4.37+044  396:047 | 6012027 514043  4.67+046 | 9.0+00  85:04 80405 | 9.0:00 86403  82:04
HibouB Accuracy | 0162002 022¢002 025002 | 015:001 0184002 0212002 | 0162002 0212004  022£0.04 | 0142000  0.18:003 020003 | 027+0.04 031005 0342006 | 0274004 031005 0.3420.06
ibou-B - sps Coverage | 0972£0.008 0.967£0.005 0.97420.005 | 0.9990.003 0.98940.002 0.98920.003 | 0.97240.018 0.96420.012 0965:0.010 | 0.999£0.003 0.991£0.007 0.98820.007 | 0.930.01 094002 0.95:0.02 | 0.96£001 097£0.01 0.98:0.01
Avg.SetSize | 630:030  523:0.19 4943012 | 693:0.13 606025  570:0.14 | 646029  550:041 5028037 | 695:0.09  629:042 589035 | 9000 85504  80:05 | 9000 86803  82:04
Accuracy | 0.18:0.02  027£003 033003 | 016£001 0224003 0262002 | 0172002 0232005  025:004 | 0.16:002  020:004 023004 | 026004 029005 032£0.06 | 0.26£0.04 029005 0.32:0.04
RAPS Coverage | 0933+0.005 0.929+0.005 0.9290.004 | 0.978£0.007 0.967+0.003 0.965:0.003 | 0.9260.019 0.932:0.014 093420014 | 097120.015 0.969£0.012 0.9680.012 | 0.91+0.01 092002 0.93:0.02 | 0.95:0.01 0.96£0.01 0.97+0.01
Avg. SetSize | 570:027  436:024  375:0.18 | 6445027 525027  4.65:0.19 | 584x021  4.87:041  436:041 | 645:025 5658038 5155047 | 85:03  8.1+04  78:05 | 85402  82:03  79:04

Table 3: Comparison of Accuracy, Emprical Coverage and Average Set Size for Baseline, Baseline++, and ProtoNets methods
with three CP methods and pathology foundation models across varying coverage and K-shot settings on the HMU-GC-HE-

30K dataset.

tasks: cervical cancer cell classification using the HiCervix
dataset and gastric cancer tissue classification using the
HMU-GC-HE-30K dataset. We use three CP methods (LAC,
APS, and RAPS) with Baseline, Baseline++, and Proto-
typical Networks methods for few-shot adaptation of UNI,
Phikon, and Hibou-B foundation models. Each experiment
is conducted over 100 independent trials, with datasets par-
titioned into three disjoint pools: a training pool (70%) for
constructing support sets, a calibration pool (10%) for cal-
ibration set generation, and a test pool (20%) for query set
formation. The experiments are performed for 1-shot (K=1),
5-shot (K'=5), and 10-shot (X'=10) configurations. For each
trial, K samples per class are drawn from the training pool to
form the support set, while additional samples from the cal-
ibration and test pools form the calibration and query sets,
respectively. The classifiers are optimized using the Adam
optimizer with a learning rate of 0.01, and standard data aug-
mentation techniques like color jittering, random horizon-
tal flipping, and random resized cropping in Baseline and
Baseline++. The experimental results are evaluated using
both standard CP and clinically aligned metrics, with per-
formance reported as the average mean + standard deviation
across all trials.

Results and Discussion

In Tables 1 and 2, we report the standard CP metrics and our
proposed clinical aligned metrics for Baseline, Baseline++,
and ProtoNets, employing three split-CP frameworks and
various pathology foundation models across multiple cov-
erage targets and few-shot settings on the HiCervix dataset.
Our results demonstrate that the LAC approach consistently
yielded the best-calibrated and most clinically efficient pre-
diction sets, followed by APS as the second best performing
CP method.Across all experimental settings, LAC achieved
up to 35% lower MRTL and 50% lower RTC, reflecting a
substantial reduction in diagnostic turnaround time and fa-
cilitating more efficient clinical workflows. Among the few-

shot adaptation strategies, ProtoNets demonstrated the most
consistent true label ranking and reliable calibration across
all configurations. It achieved upto 64% higher R1CR while
maintaining comparable ESR levels, , supporting faster clin-
ical decision-making and improved patient outcomes. Over-
all, the best-performing configurations for this task resulted
from the integration of the LAC and ProtoNets methods with
the Phikon foundation model.

In Table 3 and 4, we report both the standard CP evalua-
tion and our proposed clinical aligned metrics for LAC, APS
and RAPS methods with three few shot adaptation methods
and pathology foundation models across varying coverage
and few-shot settings on the HMU-GC-HE-30K dataset. Our
findings show that the LAC method consistently produced
the most well-calibrated and clinically efficient prediction
sets across all few-shot configurations, with APS ranking
as the next best-performing approach. Across both coverage
levels and shot configurations, LAC achieved approximately
15-30% lower MRTL and 25-45% lower RTC compared to
APS, indicating a substanial reduction in time-to-correct di-
agnosus and resulting in efficient clinical workflows. Among
the few-shot adaptation methods, Baseline demonstrated the
most robust true label ranking consistency and calibration
across all K-shot settings. It consistently achieved up to 25%
higher RICR and as much as 250% higher ESR than both
Baseline++ and ProtoNets, highlighting its effectiveness in
reducing clinical workload and supporting improved patient
outcomes. Notably, the most effective configurations for this
task were obtained by integrating the LAC and Baseline
methods with the Hibou-B foundation model.

Across both the datasets LAC emerged as the best per-
forming CP method with all the evaluation metrics follow-
ing the expected trends across all configurations, validating
the effectiveness of CP frameworks in improving reliability
for few-shot pathology classification tasks.



Baseline Baseline++ ProtoNets
Cov:90 Cov:95 Cov:90 Cov:95 Cov:90 Cov:95
Model  CPMethod Metric | K= k=10 | K=l K=s K=10 | Kl K=s K=10 | K=l K=5 K=10 | K=I K=5 K=10 | K=l K=5 K=10
MRTL | 3.40£0.20 2.70£0.20 2.300.10 | 3.70£0.10 3.1020.10  2.80+0.10 | 3.50£0.20 2.90+0.20 2.60+0.20 | 3.70£0.20 3.20£0.20 2.90£0.20 | 5.1+0.1 4.7+0.3 4.3£0.2 5.00.1 4.7+0.3 4.4+0.2
LAC RTC | 2404020 1.7020.20  1.30£0.10 | 2.70£0.10  2.10+0.10  1.80£0.10 | 2.50£0.20 1.90+0.20 1.60£0.20 | 2.70£0.20 2.20£0.20 1.90£0.20 | 4.1%0.1 3.8+0.3 3.5+0.3 4.0£0.1 3.8+0.3 3.5+0.3
RICR | 0.18£0.02 0.30£0.03 0.37+0.03 | 0.16£0.01 0.2440.03  0.30+0.03 | 0.18+0.03 0.2620.05 0.29+0.05 | 0.17£0.02 0.21+0.04 0.26£0.05 | 0.14+0.01 ~0.16+0.02  0.18+0.03 | 0.14£0.01  0.15£0.02 0.17+0.03
ESR 0.01£0.01  0.08£0.02  0.1440.02 | 0.01£0.01  0.05£0.02 0.09£0.02 | 0.02+0.01  0.0320.02  0.04£0.03 | 0.01£0.01  0.01+0.01  0.02£0.02 | 0.00£0.00 0.02+0.05 0.04£0.08 | 0.00£0.00 0.01£0.04 0.02+0.05
MRTL | 3.80£0.10 3.30£0.10 3.10£0.10 | 4.00£0.00 3.60£0.10 3.50+0.10 | 3.80£0.10 3.3020.20 3.10£0.30 | 4.00£0.10 3.70£0.10 3.50£0.30 | 5.0+0.1 4.8+0.3 4.540.3 5.00.1 4.7+0.3 4.4+0.2
UNI APS RTC | 2.80£0.10 2.3020.10  2.10£0.10 | 3.00£0.00 2.60+0.10 2.50£0.10 | 2.80£0.10 2.30£0.20 2.10£0.30 | 3.00+0.10 2.70£0.10 2.50£0.30 | 4.0£0.1 3.8+0.3 3.6+0.3 4.0£0.1 3.8+0.3 3.5+0.3
RICR | 0.1520.01  0.21£0.02  0.24£0.02 | 0.14+0.00 0.17£0.01  0.20£0.02 | 0.15£0.01 0.20£0.04 0.2240.04 | 0.14£0.00 0.17£0.02 0.19£0.04 | 0.15£0.01 0.1620.02 0.1840.03 | 0.15£0.01  0.16+0.02  0.18+0.03
ESR 0.00£0.00  0.02£0.01  0.0440.01 | 0.00£0.00 0.01£0.00 0.02+0.01 | 0.00£0.00  0.00£0.00 0.00£0.01 | 0.00£0.00 0.00£0.00 0.00£0.00 | 0.00£0.00 0.01+0.04 0.03£0.06 | 0.00£0.00 0.01£0.03 0.02+0.05
MRTL | 3.70£0.20 2.90£0.10 2.600.10 | 3.90£0.10 3.30£0.10 3.00+0.10 | 3.70£0.20  3.1020.30  2.90+0.20 | 3.80+0.10 3.40+0.20 3.20£0.30 | 5.1+0.1 5.0%0.1 4.7+0.3
RAPS RTC | 2.70£0.20  1.9020.10  1.60£0.10 | 2.90£0.10  2.30+0.10  2.00£0.10 | 2.70£0.20  2.10£0.30  1.90£0.20 | 2.80+0.10 2.40+0.20 2.204+0.30 | 4.1£0.1 4.0£0.1 3.840.3
RICR | 0.17£0.02  0.25+0.03  0.32+£0.03 | 0.15+0.01 0.21£0.02 0.26£0.03 | 0.16£0.02 0.23£0.05 0.25+0.03 | 0.15£0.01 0.19£0.04 0.2240.04 | 0.14+0.01 0.14£0.01  0.15£0.02  0.17+0.03
ESR 0.00£0.00  0.05£0.02  0.10£0.02 | 0.00£0.00 0.02+0.01  0.05£0.01 | 0.00£0.00 0.01£0.01  0.01£0.01 | 0.00£0.00 0.00£0.00 0.00£0.01 | 0.00£0.00 0.00£0.00  0.01£0.03  0.020.05
MRTL | 3.3840.20 2.7440.14 2.4240.10 | 3.60£0.15 3.10£0.14 2.81+0.11 | 3.40£0.23 2.88+0.23 2.56+0.18 | 3.61+0.17 3.154£0.21 2.924#0.22 | 5.7+0.1 4.840.2 4.3£0.3 5.620.1 4.5+0.2 4.3+0.3
LAC RTC | 2.27+0.20 1.64£0.14 1.3240.10 | 2.55+0.15 2.04+£0.14 1.760.11 | 2.29£0.24 1.7740.24 1.450.18 | 2.55+0.18 2.09+0.22 1.86+0.22 | 4.7+0.1 3.8+0.2 3.3x0.3 4.6£0.1 3.5+0.2 3.2403
RICR | 0.20£0.03 0.2840.03 0.34£0.03 | 0.18+0.02 0.24£0.03 0.28+0.03 | 0.20£0.03 0.25£0.04 0.30£0.04 | 0.18£0.02 0.23+0.03 0.26£0.04 | 0.07£0.02 0.09+0.02 0.11£0.03 | 0.07£0.02 0.08+0.02 0.09£0.03
ESR 0.01£0.01  0.05£0.02  0.10£0.02 | 0.00£0.00 0.02+0.01  0.05£0.01 | 0.02£0.01 0.03x0.02 0.05+0.02 | 0.01£0.01 0.01£0.01  0.02£0.02 | 0.00£0.00 0.02+0.04 0.03£0.06 | 0.00£0.00 0.01£0.03 0.02+0.04
MRTL | 3.75£0.13 3.2440.12 3.07+0.09 | 3.97£0.05 3.59+0.12 3.40+0.08 | 3.76£0.18 3.34+0.22 3.13+0.21 | 3.9320.10 3.64+0.20 3.39£0.20 | 5.50.1 4.5+0.2 4.240.3 5.50.1 4.4+0.2 4.2+0.3
Phikon APS RTC | 2.72+0.14  2.20£0.12  2.044£0.09 | 2.97+0.05 2.58+0.12 2.38+0.08 | 2.73£0.20 2.30£0.23 2.09+0.21 | 2.93+0.11 2.63+0.20 2.37+0.21 4.5+0.1 3.620.2 3.240.3 4.540.1 3.5+0.2 32403
RICR | 0.17¢0.02 0.21+0.02  0.24£0.02 | 0.15£0.01 0.18+£0.02 0.20£0.02 | 0.17£0.02  0.20£0.03 0.15£0.01  0.18+0.03  0.21£0.03 | 0.08+0.02 0.09+0.02 0.11£0.03 | 0.08+0.02 0.09+0.02 0.10£0.03
ESR 0.00£0.00  0.01£0.01  0.02+0.01 | 0.00£0.00 0.00£0.00 0.01£0.00 | 0.00£0.00 0.00£0.01 0.00£0.00  0.00£0.00  0.00£0.00 | 0.00£0.00 0.01£0.03 0.02+£0.05 | 0.00£0.00 0.01£0.03 0.01x0.04
MRTL | 3.59+0.16 2.95+0.14 2.64£0.10 | 3.79+0.12 3.31£0.13  3.02£0.10 | 3.57+0.20 3.05+0.22 3.76+0.16 3.374#0.22 3.14£0.18 | 5.6+0.1 5.620.1 4.9+0.2 4.5+0.3
RAPS RTC | 2.52+0.17 1.8840.14 1.57+0.10 | 2.774#0.13 2.2740.13 1.98+0.10 | 2.50£0.22 1.9740.23 2.7240.17 2.33+0.23  2.10+0.19 | 4.620.1 4.6£0.1 3.9+0.2 3.5+0.3
h RICR | 0.18£0.02 0.25+0.02 0.30£0.03 | 0.16£0.02 0.21£0.02 0.25+0.03 | 0.18+0.03  0.23x0.04 0.17£0.02  0.20£0.03  0.23+0.02 | 0.07£0.02 0.07£0.02  0.08+0.02  0.09+0.03
ESR 0.00£0.00  0.02£0.01  0.06£0.02 | 0.00£0.00 0.01£0.01 0.03x0.01 | 0.01£0.01 0.01x0.01 0.00£0.00  0.00£0.01  0.01£0.01 | 0.00£0.00 0.00£0.00  0.00£0.03  0.01x0.04
MRTL | 3.3620.19 2.66+0.15 2.35£0.11 | 3.61+0.15 3.05£0.16 2.75£0.12 | 3.49+0.15 2.95£0.25 2.71£0.28 | 3.68+0.12 3.23£0.24 2.97+0.29 | 4.5£0.2 3.8+0.3 3.40.3 4.4£0.2 3.7+0.3 3303
LAC RTC | 2.27#0.19 1.56£0.14 1.25%0.11 | 2.57#0.15 2.00£0.16 1.70£0.11 | 2.39£0.16 1.85%0.26 1.61+0.29 | 2.62+0.13 2.18+0.24  1.92+0.29 3.5+0.2 2.8+0.3 2.4%0.3 3.40.2 2.8+0.3 2.4+0.3
- RICR | 0.20£0.03  0.30+0.03 0.37£0.03 | 0.18+0.02 0.25£0.03 0.30£0.03 | 0.18+0.02 0.25£0.05 0.27+0.05 | 0.17£0.02 0.22+0.04 0.25+0.05 | 0.26£0.04 0.3120.05 0.34+0.06 | 0.26£0.04 0.30£0.05 0.33+0.06
ESR 0.01£0.01  0.06£0.02  0.12+0.02 | 0.01£0.01 0.03+0.01 0.06£0.02 | 0.01£0.01 0.02+0.01  0.03£0.02 | 0.00£0.00 0.01x0.01 0.02£0.02 | 0.00£0.00 0.03+0.06 0.05£0.08 | 0.00£0.00 0.01x0.04 0.02+0.05
MRTL | 3.74+0.14 3.22+0.12 3.084£0.08 | 3.97+0.06 3.58+0.13 3.42+0.08 | 3.82+0.12 3.33£0.26 3.12+0.22 | 3.98+0.04 3.65+0.24 3.47+0.24 | 4.4£0.2 3.7x0.3 3.3x0.3 4.440.2 3.7+0.3 3303
Hibou-B APS RTC | 2.71x0.15  2.19£0.11 2.05£0.08 | 2.97#0.06 2.57+0.13 2.41x0.08 | 2.79£0.13 2.30£0.27 2.09+0.23 | 2.98£0.04 2.65+0.24 2.46+0.25 3.420.2 2.8+0.3 2.40.3 3.4+0.2 2.8+0.3 2.4+0.3
b RICR | 0.1620.02 0.22+0.02  0.25£0.02 | 0.15+0.01 0.18£0.02 0.21£0.02 | 0.16+0.02 0.21£0.04 0.22+0.04 | 0.14£0.00 0.18+0.03 0.20£0.03 | 0.27£0.04 0.3120.05 0.34+0.06 | 0.27£0.04 0.31x0.05 0.34+0.06
ESR 0.00£0.00  0.01£0.01  0.03x0.01 | 0.00£0.00 0.00£0.00 0.01£0.00 | 0.00£0.00 0.00£0.00 0.00£0.00 | 0.00£0.00 0.00+0.00 0.00£0.00 | 0.00£0.00 0.02+0.05 0.04£0.07 | 0.00£0.00 0.010.03 0.02+0.05
MRTL | 3.55+0.16 2.86+0.14 2.55+0.11 | 3.79+0.13 3.23£0.14 2.95%0.11 | 3.65+0.13 3.10£0.26 2.85+0.27 | 3.82+0.12 3.41£0.20 3.14+0.23 4.5+0.2 4.2+0.3 3.9+0.3 4.5£0.2 4.2+0.3 4.0+0.3
RAPS RTC | 2.48+0.16 1.79£0.14 1.48%0.10 | 2.7740.14 2.20£0.14 1.91x0.11 | 2.58+0.13 2.03£0.27 1.79+0.28 | 2.79£0.12 2.38+0.20 2.11+0.23 3.5+0.2 3.2+0.3 2.9+0.3 3.5+0.2 32403 3.0+0.3
b RICR | 0.18%0.02 0.27+0.03 0.33£0.03 | 0.16+0.01 ~0.22£0.03 0.26£0.02 | 0.170.02 0.23£0.05 0.25+0.04 | 0.16£0.02 0.20£0.04 0.23x0.04 | 0.26£0.04 0.29%0.05 0.32+0.06 | 0.26£0.04 0.29+0.05 0.32+0.04
ESR 0.00£0.00  0.04£0.01  0.08+0.02 | 0.00£0.00 0.01£0.01  0.04£0.01 | 0.00£0.00 0.0120.01 0.01x0.01 | 0.00£0.00 0.00£0.01 ~ 0.00£0.01 | 0.00£0.00 0.01x0.04 0.02£0.05 | 0.00£0.00 0.01£0.03  0.02+0.04

Table 4: Comparison of MRTL, RTC, R1CR, and ESR for Baseline, Baseline++, and ProtoNets methods with three CP methods
and pathology foundation models across varying coverage and K-shot settings on the HMU-GC-HE-30K dataset.

Conclusion

In this study, we systematically integrated Conformal Pre-
diction methods with few-shot adaptation of pathology foun-
dation models to enhance diagnostic reliability and opera-
tional robustness in clinical classification tasks . We evalu-
ated these approaches across 2 datasets, using both standard
CP metrics and our proposed clinically aligned metrics de-
signed to assess their clinical applicability in few-shot set-
tings. Our results indicate that the LAC method achieved the
most reliable performance through its well-calibrated and
compact prediction sets across both datasets. These findings
highlight that integrating CP methods with few-shot adap-
tation of pathology foundation models in clinical workflows
can substantially enhance diagnostic reliability and lead to
improved patient outcomes.
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